コード例 #1
0
def test_handle_plot_inputs():
    mock_graph_data = create_mock_graph_data()
    time = ("2016-01-01-00", "2016-12-31-23", "utc", "H")
    zone_list, graph_data = handle_plot_inputs("Western", time, None, None,
                                               mock_graph_data)
    assert zone_list == ZONES["Western"]
    assert graph_data == mock_graph_data
コード例 #2
0
ファイル: plot_pie.py プロジェクト: Tom-Nudell/PostREISE
def plot_pie(
    interconnect,
    time,
    scenario_ids=None,
    scenario_names=None,
    custom_data=None,
    min_percentage=0,
):
    """Plot any number of scenarios as pie charts with two columns per scenario -
    defaults to generation and capacity.

    :param str interconnect: either 'Western' or 'Texas'.
    :param tuple time: time related parameters.
        1st element is the starting date.
        2nd element is the ending date (left out).
        3rd element is the timezone, only *'utc'*, *'US/Pacific'* and *'local'* are
        possible.
        4th element is the frequency, which can be *'H'* (hour), *'D'* (day), *'W'*
        (week) or *'auto'*.
    :param list scenario_ids: list of scenario ids, defaults to None.
    :param list scenario_names: list of scenario names of same length as scenario ids,
        defaults to None.
    :param dict custom_data: hand-generated data, defaults to None.
    :param float min_percentage: roll up small pie pieces into an Other category,
        defaults to 0.

    .. note::
        if you want to plot scenario data and custom data together, custom data MUST be
        in TWh for generation and GW for capacity. We may add a feature to check for
        and convert to equal units but it's not currently a priority.
    """
    zone_list, graph_data = handle_plot_inputs(interconnect, time,
                                               scenario_ids, scenario_names,
                                               custom_data)
    for zone in zone_list:
        ax_data_list = _construct_pie_ax_data(zone, graph_data, min_percentage)
        _construct_pie_visuals(zone, ax_data_list)
    print("\nDone\n")
コード例 #3
0
ファイル: plot_bar.py プロジェクト: Tom-Nudell/PostREISE
def plot_hbar(
    interconnect,
    time,
    scenario_ids=None,
    scenario_names=None,
    custom_data=None,
    resource_types=None,
):
    """Plot any number of scenarios as horizontal bar charts with two columns per
    scenario - defaults to generation and capacity.

    :param str interconnect: either 'Western' or 'Texas'.
    :param tuple time: time related parameters.
        1st element is the starting date.
        2nd element is the ending date (left out).
        3rd element is the timezone, only *'utc'*, *'US/Pacific'* and *'local'* are
        possible.
        4th element is the frequency, which can be *'H'* (hour), *'D'* (day), *'W'*
        (week) or *'auto'*.
    :param list scenario_ids: list of scenario ids, defaults to None.
    :param list scenario_names: list of scenario names of same len as scenario ids,
        defaults to None
    :param custom_data: hand-generated data as returned by
        :func:`postreise.plot.multi.plot_helpers.handle_plot_inputs`, defaults to None.
    :param list resource_types: list of resource types to show, defaults to None.

    .. note::
        If you want to plot scenario data and custom data together, custom data MUST be
        in TWh for generation and GW for capacity. We may add a feature to check for
        and convert to equal units but it's not currently a priority.
    """
    zone_list, graph_data = handle_plot_inputs(
        interconnect, time, scenario_ids, scenario_names, custom_data
    )
    for zone in zone_list:
        ax_data_list = _construct_bar_ax_data(zone, graph_data, resource_types)
        _construct_hbar_visuals(zone, ax_data_list)
    print("\nDone\n")
コード例 #4
0
def test_handle_plot_inputs_throws_valueError_if_not_enough_scenario_ids_or_custom_data(
):
    time = ("2016-01-01-00", "2016-12-31-23", "utc", "H")
    with pytest.raises(ValueError):
        handle_plot_inputs("Western", time, ["123"], None, custom_data=None)
コード例 #5
0
def test_handle_plot_inputs_throws_valueError_when_wrong_number_of_scenario_names(
):
    time = ("2016-01-01-00", "2016-12-31-23", "utc", "H")
    with pytest.raises(ValueError):
        handle_plot_inputs("Western", time, ["123", "456"],
                           ["Hist. Moon Cheese"], None)
コード例 #6
0
def test_handle_plot_inputs_throws_valueError_for_incorrect_interconnect():
    time = ("2016-01-01-00", "2016-12-31-23", "utc", "H")
    with pytest.raises(ValueError):
        handle_plot_inputs("The Moon", time, None, None,
                           create_mock_graph_data())
コード例 #7
0
def plot_shortfall(
    interconnect,
    time,
    scenario_ids=None,
    scenario_names=None,
    custom_data=None,
    is_match_CA=False,
    has_collaborative_scenarios=None,
    baselines=None,
    targets=None,
    demand=None,
):
    """Plot a stacked bar chart of generation shortfall for any number of scenarios.

    :param str interconnect: currently only 'Western' works. We include this param
        to keep a consistent API with all plotting functions.
    :param tuple time: time related parameters.
        1st element is the starting date.
        2nd element is the ending date (left out).
        3rd element is the timezone, only *'utc'*, *'US/Pacific'* and *'local'* are
        possible.
        4th element is the frequency, which can be *'H'* (hour), *'D'* (day), *'W'*
        (week) or *'auto'*.
    :param list scenario_ids: list of scenario ids.
    :param list scenario_names: list of scenario names of same len as scenario ids.
    :param dict custom_data: hand-generated data, defaults to None.
    :param bool is_match_CA: calculate shortfall using special rules that apply when
        all zones match California goals, defaults to False
    :param list has_collaborative_scenarios: list of scenario ids where all zones
        collaborate to meet goals. Affects results for interconnect, defaults to None.
    :param dict baselines: baseline renewables generation for each zone, defaults to
        None.
    :param dict targets: target renewables renewable generation for each zone, defaults
        to None.
    :param dict demand: total demand for each zone, defaults to None

    .. note::
        If you want to plot scenario data and custom data together, custom data MUST be
        in TWh for generation and GW for capacity. We may add a feature to check for
        and convert to equal units but it's not currently a priority.
    """
    zone_list, graph_data = handle_plot_inputs(interconnect, time,
                                               scenario_ids, scenario_names,
                                               custom_data)
    baselines, targets, demand = handle_shortfall_inputs(
        is_match_CA, baselines, targets, demand)

    for zone in zone_list:
        if zone == "Western":
            ax_data, shortfall_pct_list = _construct_shortfall_data_for_western(
                graph_data,
                is_match_CA,
                has_collaborative_scenarios,
                baselines[zone],
                targets,
                demand[zone],
            )
        else:
            ax_data, shortfall_pct_list = _construct_shortfall_ax_data(
                zone,
                graph_data,
                is_match_CA,
                baselines[zone],
                targets[zone],
                demand[zone],
            )

        _construct_shortfall_visuals(zone, ax_data, shortfall_pct_list,
                                     is_match_CA, targets[zone], demand[zone])
    print("\nDone\n")