def process_general_file(score, namefile): res = list(sorted(score, key=score.__getitem__, reverse=True)) l = 0 values = [] for s in res: if s not in args.skip: values.append(s) l += 1 if l >= limit: break with open("{}.csv".format(namefile), 'w') as f: f.write("id,value\n") for v in values: val = bubble_annotation(field, field_string, v, potiron_path, None) f.write("{}{},\n".format(v, val)) f.write("{}{},{}\n".format(v, val, int(score[v]))) return values
def process_general_file(score, namefile, field, field_string, skip, limit): res = list(sorted(score, key=score.__getitem__, reverse=True)) l = 0 values = [] for s in res: if s not in skip: values.append(s) l+=1 if l >= limit: break with open("{}.csv".format(namefile), 'w') as f: f.write("id,value\n") for v in values : val = bubble_annotation(field,field_string,v,potiron_path,None) f.write("{}{},\n".format(v,val)) f.write("{}{},{}\n".format(v,val,int(score[v]))) return values
def process_file(score, name, prot, skip, limit): # Sort the complete list of values for the month by score res = list(sorted(score, key=score.__getitem__, reverse=True)) l = 0 values = [] for s in res: # If the current value is not one that should be skipped, increment the number of values to include in the chart if s not in skip: values.append(s) l += 1 # When the limit value is reached, we don't need to increment anymore, we break the loop if l >= limit: break # Write all the values and their scores into the csv datafile with open("{}.csv".format(name),'w') as f: f.write("id,value\n") for v in values : val = bubble_annotation(field,field_string,v,potiron_path,prot) f.write("{}{},\n".format(v,val)) f.write("{}{},{}\n".format(v,val,int(score[v]))) return values
def process_file(red, redisKey, name, field, protocol, field_string, skip, limit): l = 0 values = [] # For each value ranged in decreasing order for v in red.zrevrangebyscore(redisKey,MAXVAL,0): val = v.decode() # If the current value is not one that should be skipped, increment the number of values to include in the chart if val not in skip : values.append(val) l += 1 # When the limit value is reached, we don't need to increment anymore, we break the loop if l >= limit: break # Write all the values and their scores into the csv datafile with open("{}.csv".format(name),'w') as f: f.write("id,value\n") for v in values: val = bubble_annotation(field,field_string,v,potiron_path,protocol) f.write("{}{},\n".format(v,val)) f.write("{}{},{}\n".format(v,val,red.zscore(redisKey,v))) return values
def process_file(self, redisKey, name, protocol, field_string): l = 0 values = [] # For each value ranged in decreasing order for v in self.red.zrevrangebyscore(redisKey,self.MAXVAL,0): val = v.decode() # If the current value is not one that should be skipped, increment the number of values to include in the chart if val not in self.skip : values.append(val) l += 1 # When the limit value is reached, we don't need to increment anymore, we break the loop if l >= self.limit: break # Write all the values and their scores into the csv datafile with open("{}.csv".format(name),'w') as f: f.write("id,value\n") for v in values: val = bubble_annotation(self.field,field_string,v,potiron.potiron_path,protocol) f.write("{}{},\n".format(v,val)) f.write("{}{},{}\n".format(v,val,self.red.zscore(redisKey,v))) return values