def main(): args = parse_args() try: os.makedirs(args.directory) except OSError: pass target = Volume.fromfile(args.target) structure = Structure.fromfile(args.template) center = structure.coor.mean(axis=1) radius = np.linalg.norm((structure.coor - center.reshape(-1, 1)), axis=0).max() + 0.5 * args.resolution template = zeros_like(target) rottemplate = zeros_like(target) mask = zeros_like(target) rotmask = zeros_like(target) structure_to_shape(structure.coor, args.resolution, out=template, shape='vol', weights=structure.atomnumber) structure_to_shape(structure.coor, args.resolution, out=mask, shape='mask') if args.laplace: target.array = laplace(target.array, mode='constant') template.array = laplace(template.array, mode='constant') if args.core_weighted: mask.array = determine_core_indices(mask.array) # Normalize the template density ind = mask.array != 0 N = ind.sum() template.array *= mask.array template.array[ind] -= template.array[ind].mean() template.array[ind] /= template.array[ind].std() rotmat = quat_to_rotmat(proportional_orientations(args.angle)[0]) lcc_list = [] center -= target.origin center /= template.voxelspacing radius /= template.voxelspacing time0 = time() for n, rot in enumerate(rotmat): rotate_grid(template.array, rot, center, radius, rottemplate.array) rotate_grid(mask.array, rot, center, radius, rotmask.array, nearest=True) lcc = calc_lcc(target.array, rottemplate.array, rotmask.array, N) lcc_list.append(lcc) print '{:d} \r'.format(n), print 'Searching took: {:.0f}m {:.0f}s'.format(*divmod(time() - time0, 60)) ind = np.argsort(lcc_list)[::-1] with open(os.path.join(args.directory, args.outfile), 'w') as f: line = ' '.join(['{:.4f}'] + ['{:7.4f}'] * 9) + '\n' for n in xrange(min(args.nsolutions, len(lcc_list))): f.write(line.format(lcc_list[ind[n]], *rotmat[ind[n]].ravel()))
import sys import numpy as np from numpy.fft import fftn from powerfit import Volume from powerfit._powerfit import fsc_curve vol1 = Volume.fromfile(sys.argv[1]) vol2 = Volume.fromfile(sys.argv[2]) ft_vol1 = fftn(vol1.array) ft_vol2 = fftn(vol2.array) fsc = fsc_curve(ft_vol1, ft_vol2) res = [n / vol1.dimensions[0] for n in xrange(fsc.size)] inv_res = [1 / r for r in res[1:]] print fsc print print res print print inv_res
def main(): time0 = time() args = parse_args() mkdir_p(args.directory) # Configure logging file logging.basicConfig(filename=join(args.directory, 'powerfit.log'), level=logging.INFO, format='%(asctime)s %(message)s') logging.info(' '.join(argv)) # Get GPU queue if requested queues = None if args.gpu: import pyopencl as cl p = cl.get_platforms()[0] devs = p.get_devices() context = cl.Context(devices=devs) # For clFFT each queue should have its own Context queues = [cl.CommandQueue(context, device=dev) for dev in devs] write('Target file read from: {:s}'.format(abspath(args.target.name))) target = Volume.fromfile(args.target) write('Target resolution: {:.2f}'.format(args.resolution)) resolution = args.resolution write(('Initial shape of density:' + ' {:d}' * 3).format(*target.shape)) # Resample target density if requested if not args.no_resampling: factor = 2 * args.resampling_rate * target.voxelspacing / resolution if factor < .9: target = resample(target, factor) write(('Shape after resampling:' + ' {:d}' * 3).format(*target.shape)) # Trim target density if requested if not args.no_trimming: if args.trimming_cutoff is None: args.trimming_cutoff = target.array.max() / 10 target = trim(target, args.trimming_cutoff) write(('Shape after trimming:' + ' {:d}' * 3).format(*target.shape)) # Extend the density to a multiple of 2, 3, 5, and 7 for clFFT extended_shape = [nearest_multiple2357(n) for n in target.shape] target = extend(target, extended_shape) write(('Shape after extending:' + ' {:d}' * 3).format(*target.shape)) # Read in structure or high-resolution map write('Template file read from: {:s}'.format(abspath(args.template.name))) structure = Structure.fromfile(args.template) if args.chain is not None: write('Selecting chains: ' + args.chain) structure = structure.select('chain', args.chain.split(',')) if structure.data.size == 0: raise ValueError("No atoms were selected.") # Move structure to origin of density structure.translate(target.origin - structure.coor.mean(axis=1)) template = structure_to_shape_like(target, structure.coor, resolution=resolution, weights=structure.atomnumber, shape='vol') mask = structure_to_shape_like(target, structure.coor, resolution=resolution, shape='mask') # Read in the rotations to sample write('Reading in rotations.') q, w, degree = proportional_orientations(args.angle) rotmat = quat_to_rotmat(q) write('Requested rotational sampling density: {:.2f}'.format(args.angle)) write('Real rotational sampling density: {:}'.format(degree)) # Apply core-weighted mask if requested if args.core_weighted: write('Calculating core-weighted mask.') mask.array = determine_core_indices(mask.array) pf = PowerFitter(target, laplace=args.laplace) pf._rotations = rotmat pf._template = template pf._mask = mask pf._nproc = args.nproc pf.directory = args.directory pf._queues = queues if args.gpu: write('Using GPU-accelerated search.') else: write('Requested number of processors: {:d}'.format(args.nproc)) write('Starting search') time1 = time() pf.scan() write( 'Time for search: {:.0f}m {:.0f}s'.format(*divmod(time() - time1, 60))) write('Analyzing results') # calculate the molecular volume of the structure mv = structure_to_shape_like( target, structure.coor, resolution=resolution, radii=structure.rvdw, shape='mask').array.sum() * target.voxelspacing**3 z_sigma = fisher_sigma(mv, resolution) analyzer = Analyzer(pf._lcc, rotmat, pf._rot, voxelspacing=target.voxelspacing, origin=target.origin, z_sigma=z_sigma) write('Writing solutions to file.') Volume(pf._lcc, target.voxelspacing, target.origin).tofile(join(args.directory, 'lcc.mrc')) analyzer.tofile(join(args.directory, 'solutions.out')) write('Writing PDBs to file.') n = min(args.num, len(analyzer.solutions)) write_fits_to_pdb(structure, analyzer.solutions[:n], basename=join(args.directory, 'fit')) write('Total time: {:.0f}m {:.0f}s'.format(*divmod(time() - time0, 60)))
def main(): time0 = clock() args = parse_args() mkdir_p(args.directory) # Configure logging file logging.basicConfig(filename=join(args.directory, 'powerfit.log'), level=logging.INFO, format='%(asctime)s %(message)s') logging.info(' '.join(argv)) # Get GPU queue if requested queues = None if args.gpu: import pyopencl as cl p = cl.get_platforms()[0] devs = p.get_devices() ctx = cl.Context(devices=devs) # For clFFT each queue should have its own Context contexts = [cl.Context(devices=[dev]) for dev in devs] queues = [cl.CommandQueue(ctx, device=dev) for ctx, dev in zip(contexts, devs)] write('Target file read from: {:s}'.format(abspath(args.target.name))) target = Volume.fromfile(args.target) write('Target resolution: {:.2f}'.format(args.resolution)) resolution = args.resolution write(('Initial shape of density:' + ' {:d}'*3).format(*target.shape)) # Resample target density if requested if not args.no_resampling: factor = 2 * args.resampling_rate * target.voxelspacing / resolution if factor < .9: target = resample(target, factor) write(('Shape after resampling:' + ' {:d}'*3).format(*target.shape)) # Trim target density if requested if not args.no_trimming: if args.trimming_cutoff is None: args.trimming_cutoff = target.array.max() / 10 target = trim(target, args.trimming_cutoff) write(('Shape after trimming:' + ' {:d}'*3).format(*target.shape)) # Extend the density to a multiple of 2, 3, 5, and 7 for clFFT extended_shape = [nearest_multiple2357(n) for n in target.shape] target = extend(target, extended_shape) write(('Shape after extending:' + ' {:d}'*3).format(*target.shape)) # Read in structure or high-resolution map if args.ft_template == 'pdb': write('Template file read from: {:s}'.format(abspath(args.template.name))) structure = Structure.fromfile(args.template) if args.chain is not None: write('Selecting chains: ' + args.chain) structure = structure.select('chain', args.chain.split(',')) if structure.data.size == 0: raise ValueError("No atoms were selected.") template = structure_to_shape_like( target, structure.coor, resolution=resolution, weights=structure.atomnumber, shape='vol' ) mask = structure_to_shape_like( target, structure.coor, resolution=resolution, shape='mask' ) elif args.ft_template == 'map': template_high_res = Volume.fromfile(args.template) #TODO handle correctly # Read in the rotations to sample write('Reading in rotations.') q, w, degree = proportional_orientations(args.angle) rotmat = quat_to_rotmat(q) write('Requested rotational sampling density: {:.2f}'.format(args.angle)) write('Real rotational sampling density: {:}'.format(degree)) # Apply core-weighted mask if requested if args.core_weighted: write('Calculating core-weighted mask.') mask.array = determine_core_indices(mask.array) pf = PowerFitter(target, laplace=args.laplace) pf._rotations = rotmat pf._template = template pf._mask = mask pf._nproc = args.nproc pf.directory = args.directory pf._queues = queues if args.gpu: write('Using GPU-accelerated search.') else: write('Requested number of processors: {:d}'.format(args.nproc)) write('Starting search') time1 = clock() pf.scan() write('Time for search: {:.0f}m {:.0f}s'.format(*divmod(clock() - time1, 60))) write('Analyzing results') # calculate the molecular volume of the structure mv = structure_to_shape_like( target, structure.coor, resolution=resolution, radii=structure.rvdw, shape='mask' ).array.sum() * target.voxelspacing ** 3 z_sigma = fisher_sigma(mv, resolution) analyzer = Analyzer( pf._lcc, rotmat, pf._rot, voxelspacing=target.voxelspacing, origin=target.origin, z_sigma=z_sigma ) write('Writing solutions to file.') Volume(pf._lcc, target.voxelspacing, target.origin).tofile(join(args.directory, 'lcc.mrc')) analyzer.tofile(join(args.directory, 'solutions.out')) if args.ft_template == 'pdb': write('Writing PDBs to file.') n = min(args.num, len(analyzer.solutions)) write_fits_to_pdb(structure, analyzer.solutions[:n], basename=join(args.directory, 'fit')) write('Total time: {:.0f}m {:.0f}s'.format(*divmod(clock() - time0, 60)))