コード例 #1
0
def test_readings_for_obstacles_regression_1():
    """
    Regression test for bug before normalize_radians().
    """
    a = 0.299541
    b = 0.0500507
    laser_angles = lasers.default_laser_angles()
    laser_max_range = lasers.default_laser_max_range()
    obstacles = np.array([
        [-4.475, 1.45, 0.35],
        [-1.3, 1.025, 0.35],
        [-3., -1.55, 0.35],
        [0.65, -1.95, 0.35],
        [-1.95, -3.8, 0.35],
        [0.15, -5.625, 0.35]])
    x = 0.18361848856646254
    y = -4.2881577071112806
    theta = -2.2011317013010205
    lx, ly, ltheta = lasers.car_loc_to_laser_loc(x, y, theta, a, b)
    obs_lasers = fast.readings_for_obstacles(
        lx, ly, ltheta, laser_angles, laser_max_range, obstacles)

    # For debugging when the test fails:
    if False:
        for i, val in enumerate(obs_lasers):
            print i, val
        lasers.plot_lasers(
            lx, ly, ltheta, laser_angles, laser_max_range,
            obstacles, obs_lasers, plt.gca())
        plt.show()

    nose.tools.assert_almost_equals(obs_lasers[16], 1.89867472652, 10)
    nose.tools.assert_almost_equals(obs_lasers[85], 10.0, 10)
    nose.tools.assert_almost_equals(obs_lasers[278], 0.739595449593, 10)
コード例 #2
0
def test_readings_for_obstacle_vectorized():
    lx, ly, ltheta = -7.0, -7.0, 1.7
    laser_angles = lasers.default_laser_angles()
    laser_max_range = lasers.default_laser_max_range()
    ox, oy, orad = 7.0, 9.0, 1.0
    readings_1 = lasers.readings_for_obstacle(
        lx, ly, ltheta, laser_angles, laser_max_range, ox, oy, orad)
    readings_2 = lasers.readings_for_obstacle_vectorized(
        lx, ly, ltheta, laser_angles, laser_max_range, ox, oy, orad)
    nose.tools.assert_true(np.sum(np.abs(readings_1 - readings_2)) < 1e-6)
コード例 #3
0
def test_readings_for_obstacles_old_new():
    laser_angles = lasers.default_laser_angles()
    laser_max_range = lasers.default_laser_max_range()
    obstacles = np.array([
        [-4.475, 1.45, 0.4],
        [-1.3, 1.025, 0.4],
        [-3.0, -1.55, 0.4],
        [0.65, -1.95, 0.4],
        [-1.95, -3.8, 0.4],
        [0.15, -5.625, 0.4]
    ])
    lx = -6.1039
    ly = -0.0499926
    for ltheta in np.arange(-np.pi, np.pi, 0.1):
        print ltheta
        readings_1 = lasers.readings_for_obstacles_old(
            lx, ly, ltheta, laser_angles, laser_max_range, obstacles)
        readings_2 = fast.readings_for_obstacles(
            lx, ly, ltheta, laser_angles, laser_max_range, obstacles)
        nose.tools.assert_true(np.sum(np.abs(readings_1 - readings_2)) < 1e-6)
コード例 #4
0
def test_readings_for_obstacles_regression_2():
    """
    Regression test for assertion failure in fast_lasers.c.
    """
    lx, ly, ltheta = -5.8043534, -2.562654, -0.000112593
    laser_angles = lasers.default_laser_angles()
    laser_max_range = lasers.default_laser_max_range()
    obstacles = np.array([
        [4.6, -3.4, 0.68],
    ])
    obs_lasers = fast.readings_for_obstacles(
        lx, ly, ltheta, laser_angles, laser_max_range, obstacles)

    # For debugging when the test fails:
    if False:
        for i, val in enumerate(obs_lasers):
            print i, val
        lasers.plot_lasers(
            lx, ly, ltheta, laser_angles, laser_max_range,
            obstacles, obs_lasers, plt.gca())
        plt.show()

    nose.tools.assert_almost_equals(obs_lasers[170], 9.761751166778446, 10)
コード例 #5
0
ファイル: pf.py プロジェクト: BayesianLogic/ppaml-slam
    def __init__(self, dataset, num_particles):
        super(LocPF, self).__init__(num_particles)
        self.dataset = dataset
        self.current_velocity = 0.0
        self.current_steering = 0.0

        self.add_controls_noise = False
        self.velocity_noise_stdev = 0.1
        self.steering_noise_stdev = 0.3

        self.add_dynamics_noise = True
        self.x_noise_stdev = 0.003
        self.y_noise_stdev = 0.003
        self.theta_noise_stdev = 0.0015

        self.obs_cov_scale = 30.0
        self.laser_angles = lasers.default_laser_angles()
        self.laser_max_range = lasers.default_laser_max_range()

        # Convert obstacles from list of (x, y) to array of (x, y, r).
        obstacle_radius = 0.37
        self.ground_obstacles = []
        for x, y in dataset.ground_obstacles:
            self.ground_obstacles.append((x, y, obstacle_radius))
        self.ground_obstacles = np.array(self.ground_obstacles)

        self.fig1 = plt.figure(figsize=(8, 12))
        self.ax1 = self.fig1.add_subplot(211)
        self.ax2 = self.fig1.add_subplot(413)
        self.ax3 = self.fig1.add_subplot(414)

        # Hack to display colorbar for angle.
        plt.sca(self.ax1)
        a = np.array([[-np.pi, np.pi]])
        x = plt.pcolor(a)
        self.ax1.clear()
        plt.colorbar(x, ax=self.ax1)

        # Hack to display legends for the bottom plots.
        dummy_lines = []
        dummy_lines += self.ax2.plot(
            [0, 0], [0, 0], 'g', label='ground_gps_llik')
        dummy_lines += self.ax2.plot(
            [0, 0], [0, 0], 'r', label='best_particle_llik')
        self.ax2.legend()
        dummy_lines += self.ax3.plot([0, 0], [0, 0], label='error^2')
        self.ax3.legend()
        for line in dummy_lines:
            line.remove()

        # Plot ground-truth and dead-reckoning trajectories.
        gps_traj = draw_dr.get_ground_truth_traj(dataset)
        self.ax1.plot(gps_traj[:, 1], gps_traj[:, 2], label='ground')
        dr_traj = draw_dr.get_dead_reckoning_traj(dataset, draw_dr.dynamics)
        self.ax1.plot(dr_traj[:, 1], dr_traj[:, 2], label='dead-reckoning')
        lasers.plot_obstacles(self.ground_obstacles, self.ax1)

        self.ax1.set_xlim(X_MIN - 1, X_MAX + 1)
        self.ax1.set_ylim(Y_MIN - 1, Y_MAX + 1)
        self.ax1.legend()
        plt.ion()  # needed for running through cProfile
        plt.show()
コード例 #6
0
from ppaml_car import fast
from ppaml_car import lasers

from timeit import timeit
import matplotlib.pyplot as plt
import numpy as np


laser_angles = lasers.default_laser_angles()
laser_max_range = lasers.default_laser_max_range()
obstacles = np.array([
    [-4.475, 1.45, 0.4],
    [-1.3, 1.025, 0.4],
    [-3.0, -1.55, 0.4],
    [0.65, -1.95, 0.4],
    [-1.95, -3.8, 0.4],
    [0.15, -5.625, 0.4]
])
true_x = -6.1039
true_y = -0.0499926
true_theta = -0.14
# true_theta = -2.34159265359


def visual_test():
    readings_old = readings_for_obstacles_old()
    plt.figure('old')
    lasers.plot_lasers(
        true_x, true_y, true_theta,
        laser_angles, laser_max_range,
        obstacles, readings_old, plt.gca())