def init_model(self): self.place = fluid.CUDAPlace(0) if self.use_gpu else fluid.CPUPlace() self.exe = fluid.Executor(self.place) self.model = create(self.main_arch) startup_prog = fluid.Program() infer_prog = fluid.Program() with fluid.program_guard(infer_prog, startup_prog): with fluid.unique_name.guard(): _, feed_vars = create_feed(self.test_feed, use_pyreader=False) self.test_fetches = self.model.test(feed_vars) self.infer_prog = infer_prog.clone(True) self.feeder = fluid.DataFeeder(place=self.place, feed_list=feed_vars.values()) self.exe.run(startup_prog) if self.cfg.weights: checkpoint.load_checkpoint(self.exe, self.infer_prog, self.model_path) self.is_bbox_normalized = False if hasattr(self.model, 'is_bbox_normalized') and \ callable(self.model.is_bbox_normalized): self.is_bbox_normalized = self.model.is_bbox_normalized()
def main(): cfg = load_config(FLAGS.config) if 'architecture' in cfg: main_arch = cfg.architecture else: raise ValueError("'architecture' not specified in config file.") merge_config(FLAGS.opt) # Use CPU for exporting inference model instead of GPU place = fluid.CPUPlace() exe = fluid.Executor(place) model = create(main_arch) startup_prog = fluid.Program() infer_prog = fluid.Program() with fluid.program_guard(infer_prog, startup_prog): with fluid.unique_name.guard(): inputs_def = cfg['TestReader']['inputs_def'] inputs_def['use_dataloader'] = False feed_vars, _ = model.build_inputs(**inputs_def) test_fetches = model.test(feed_vars) infer_prog = infer_prog.clone(True) pruned_params = FLAGS.pruned_params assert ( FLAGS.pruned_params is not None ), "FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option." pruned_params = FLAGS.pruned_params.strip().split(",") logger.info("pruned params: {}".format(pruned_params)) pruned_ratios = [float(n) for n in FLAGS.pruned_ratios.strip().split(",")] logger.info("pruned ratios: {}".format(pruned_ratios)) assert (len(pruned_params) == len(pruned_ratios) ), "The length of pruned params and pruned ratios should be equal." assert (pruned_ratios > [0] * len(pruned_ratios) and pruned_ratios < [1] * len(pruned_ratios) ), "The elements of pruned ratios should be in range (0, 1)." base_flops = flops(infer_prog) pruner = Pruner() infer_prog, _, _ = pruner.prune( infer_prog, fluid.global_scope(), params=pruned_params, ratios=pruned_ratios, place=place, only_graph=True) pruned_flops = flops(infer_prog) logger.info("pruned FLOPS: {}".format( float(base_flops - pruned_flops) / base_flops)) exe.run(startup_prog) checkpoint.load_checkpoint(exe, infer_prog, cfg.weights) save_infer_model(FLAGS, exe, feed_vars, test_fetches, infer_prog)
def main(): env = os.environ FLAGS.dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env if FLAGS.dist: trainer_id = int(env['PADDLE_TRAINER_ID']) local_seed = (99 + trainer_id) random.seed(local_seed) np.random.seed(local_seed) if FLAGS.enable_ce: random.seed(0) np.random.seed(0) cfg = load_config(FLAGS.config) merge_config(FLAGS.opt) check_config(cfg) # check if set use_gpu=True in paddlepaddle cpu version check_gpu(cfg.use_gpu) # check if paddlepaddle version is satisfied check_version() save_only = getattr(cfg, 'save_prediction_only', False) if save_only: raise NotImplementedError('The config file only support prediction,' ' training stage is not implemented now') main_arch = cfg.architecture if cfg.use_gpu: devices_num = fluid.core.get_cuda_device_count() else: devices_num = int(os.environ.get('CPU_NUM', 1)) if 'FLAGS_selected_gpus' in env: device_id = int(env['FLAGS_selected_gpus']) else: device_id = 0 place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) lr_builder = create('LearningRate') optim_builder = create('OptimizerBuilder') # build program startup_prog = fluid.Program() train_prog = fluid.Program() if FLAGS.enable_ce: startup_prog.random_seed = 1000 train_prog.random_seed = 1000 with fluid.program_guard(train_prog, startup_prog): with fluid.unique_name.guard(): model = create(main_arch) if FLAGS.fp16: assert (getattr(model.backbone, 'norm_type', None) != 'affine_channel'), \ '--fp16 currently does not support affine channel, ' \ ' please modify backbone settings to use batch norm' with mixed_precision_context(FLAGS.loss_scale, FLAGS.fp16) as ctx: inputs_def = cfg['TrainReader']['inputs_def'] feed_vars, train_loader = model.build_inputs(**inputs_def) train_fetches = model.train(feed_vars) loss = train_fetches['loss'] if FLAGS.fp16: loss *= ctx.get_loss_scale_var() lr = lr_builder() optimizer = optim_builder(lr) optimizer.minimize(loss) if FLAGS.fp16: loss /= ctx.get_loss_scale_var() if 'use_ema' in cfg and cfg['use_ema']: global_steps = _decay_step_counter() ema = ExponentialMovingAverage( cfg['ema_decay'], thres_steps=global_steps) ema.update() # parse train fetches train_keys, train_values, _ = parse_fetches(train_fetches) train_values.append(lr) if FLAGS.eval: eval_prog = fluid.Program() with fluid.program_guard(eval_prog, startup_prog): with fluid.unique_name.guard(): model = create(main_arch) inputs_def = cfg['EvalReader']['inputs_def'] feed_vars, eval_loader = model.build_inputs(**inputs_def) fetches = model.eval(feed_vars) eval_prog = eval_prog.clone(True) eval_reader = create_reader(cfg.EvalReader, devices_num=1) eval_loader.set_sample_list_generator(eval_reader, place) # parse eval fetches extra_keys = [] if cfg.metric == 'COCO': extra_keys = ['im_info', 'im_id', 'im_shape'] if cfg.metric == 'VOC': extra_keys = ['gt_bbox', 'gt_class', 'is_difficult'] if cfg.metric == 'WIDERFACE': extra_keys = ['im_id', 'im_shape', 'gt_bbox'] eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog, extra_keys) # compile program for multi-devices build_strategy = fluid.BuildStrategy() build_strategy.fuse_all_optimizer_ops = False # only enable sync_bn in multi GPU devices sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn' build_strategy.sync_batch_norm = sync_bn and devices_num > 1 \ and cfg.use_gpu exec_strategy = fluid.ExecutionStrategy() # iteration number when CompiledProgram tries to drop local execution scopes. # Set it to be 1 to save memory usages, so that unused variables in # local execution scopes can be deleted after each iteration. exec_strategy.num_iteration_per_drop_scope = 1 if FLAGS.dist: dist_utils.prepare_for_multi_process(exe, build_strategy, startup_prog, train_prog) exec_strategy.num_threads = 1 exe.run(startup_prog) compiled_train_prog = fluid.CompiledProgram(train_prog).with_data_parallel( loss_name=loss.name, build_strategy=build_strategy, exec_strategy=exec_strategy) if FLAGS.eval: compiled_eval_prog = fluid.CompiledProgram(eval_prog) fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel' ignore_params = cfg.finetune_exclude_pretrained_params \ if 'finetune_exclude_pretrained_params' in cfg else [] start_iter = 0 if FLAGS.resume_checkpoint: checkpoint.load_checkpoint(exe, train_prog, FLAGS.resume_checkpoint) start_iter = checkpoint.global_step() elif cfg.pretrain_weights and fuse_bn and not ignore_params: checkpoint.load_and_fusebn(exe, train_prog, cfg.pretrain_weights) elif cfg.pretrain_weights: checkpoint.load_params( exe, train_prog, cfg.pretrain_weights, ignore_params=ignore_params) train_reader = create_reader( cfg.TrainReader, (cfg.max_iters - start_iter) * devices_num, cfg, devices_num=devices_num) train_loader.set_sample_list_generator(train_reader, place) # whether output bbox is normalized in model output layer is_bbox_normalized = False if hasattr(model, 'is_bbox_normalized') and \ callable(model.is_bbox_normalized): is_bbox_normalized = model.is_bbox_normalized() # if map_type not set, use default 11point, only use in VOC eval map_type = cfg.map_type if 'map_type' in cfg else '11point' train_stats = TrainingStats(cfg.log_smooth_window, train_keys) train_loader.start() start_time = time.time() end_time = time.time() cfg_name = os.path.basename(FLAGS.config).split('.')[0] save_dir = os.path.join(cfg.save_dir, cfg_name) time_stat = deque(maxlen=cfg.log_smooth_window) best_box_ap_list = [0.0, 0] #[map, iter] # use VisualDL to log data if FLAGS.use_vdl: from visualdl import LogWriter vdl_writer = LogWriter(FLAGS.vdl_log_dir) vdl_loss_step = 0 vdl_mAP_step = 0 for it in range(start_iter, cfg.max_iters): start_time = end_time end_time = time.time() time_stat.append(end_time - start_time) time_cost = np.mean(time_stat) eta_sec = (cfg.max_iters - it) * time_cost eta = str(datetime.timedelta(seconds=int(eta_sec))) outs = exe.run(compiled_train_prog, fetch_list=train_values) stats = {k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1])} # use vdl-paddle to log loss if FLAGS.use_vdl: if it % cfg.log_iter == 0: for loss_name, loss_value in stats.items(): vdl_writer.add_scalar(loss_name, loss_value, vdl_loss_step) vdl_loss_step += 1 train_stats.update(stats) logs = train_stats.log() if it % cfg.log_iter == 0 and (not FLAGS.dist or trainer_id == 0): strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format( it, np.mean(outs[-1]), logs, time_cost, eta) logger.info(strs) # NOTE : profiler tools, used for benchmark if FLAGS.is_profiler and it == 5: profiler.start_profiler("All") elif FLAGS.is_profiler and it == 10: profiler.stop_profiler("total", FLAGS.profiler_path) return if (it > 0 and it % cfg.snapshot_iter == 0 or it == cfg.max_iters - 1) \ and (not FLAGS.dist or trainer_id == 0): save_name = str(it) if it != cfg.max_iters - 1 else "model_final" if 'use_ema' in cfg and cfg['use_ema']: exe.run(ema.apply_program) checkpoint.save(exe, train_prog, os.path.join(save_dir, save_name)) if FLAGS.eval: # evaluation resolution = None if 'Mask' in cfg.architecture: resolution = model.mask_head.resolution results = eval_run( exe, compiled_eval_prog, eval_loader, eval_keys, eval_values, eval_cls, cfg, resolution=resolution) box_ap_stats = eval_results( results, cfg.metric, cfg.num_classes, resolution, is_bbox_normalized, FLAGS.output_eval, map_type, cfg['EvalReader']['dataset']) # use vdl_paddle to log mAP if FLAGS.use_vdl: vdl_writer.add_scalar("mAP", box_ap_stats[0], vdl_mAP_step) vdl_mAP_step += 1 if box_ap_stats[0] > best_box_ap_list[0]: best_box_ap_list[0] = box_ap_stats[0] best_box_ap_list[1] = it checkpoint.save(exe, train_prog, os.path.join(save_dir, "best_model")) logger.info("Best test box ap: {}, in iter: {}".format( best_box_ap_list[0], best_box_ap_list[1])) if 'use_ema' in cfg and cfg['use_ema']: exe.run(ema.restore_program) train_loader.reset()
def main(): cfg = load_config(FLAGS.config) if 'architecture' in cfg: main_arch = cfg.architecture else: raise ValueError("'architecture' not specified in config file.") merge_config(FLAGS.opt) if 'log_iter' not in cfg: cfg.log_iter = 20 # check if set use_gpu=True in paddlepaddle cpu version check_gpu(cfg.use_gpu) if cfg.use_gpu: devices_num = fluid.core.get_cuda_device_count() else: devices_num = int( os.environ.get('CPU_NUM', multiprocessing.cpu_count())) if 'train_feed' not in cfg: train_feed = create(main_arch + 'TrainFeed') else: train_feed = create(cfg.train_feed) if FLAGS.eval: if 'eval_feed' not in cfg: eval_feed = create(main_arch + 'EvalFeed') else: eval_feed = create(cfg.eval_feed) place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) lr_builder = create('LearningRate') optim_builder = create('OptimizerBuilder') # build program startup_prog = fluid.Program() train_prog = fluid.Program() with fluid.program_guard(train_prog, startup_prog): with fluid.unique_name.guard(): model = create(main_arch) train_pyreader, feed_vars = create_feed(train_feed) train_fetches = model.train(feed_vars) loss = train_fetches['loss'] lr = lr_builder() optimizer = optim_builder(lr) optimizer.minimize(loss) train_reader = create_reader(train_feed, cfg.max_iters * devices_num, FLAGS.dataset_dir) train_pyreader.decorate_sample_list_generator(train_reader, place) # parse train fetches train_keys, train_values, _ = parse_fetches(train_fetches) train_values.append(lr) if FLAGS.eval: eval_prog = fluid.Program() with fluid.program_guard(eval_prog, startup_prog): with fluid.unique_name.guard(): model = create(main_arch) eval_pyreader, feed_vars = create_feed(eval_feed) fetches = model.eval(feed_vars) eval_prog = eval_prog.clone(True) eval_reader = create_reader(eval_feed, args_path=FLAGS.dataset_dir) eval_pyreader.decorate_sample_list_generator(eval_reader, place) # parse eval fetches extra_keys = [] if cfg.metric == 'COCO': extra_keys = ['im_info', 'im_id', 'im_shape'] if cfg.metric == 'VOC': extra_keys = ['gt_box', 'gt_label', 'is_difficult'] eval_keys, eval_values, eval_cls = parse_fetches( fetches, eval_prog, extra_keys) # compile program for multi-devices build_strategy = fluid.BuildStrategy() build_strategy.memory_optimize = False build_strategy.enable_inplace = False sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn' # only enable sync_bn in multi GPU devices build_strategy.sync_batch_norm = sync_bn and devices_num > 1 \ and cfg.use_gpu train_compile_program = fluid.compiler.CompiledProgram( train_prog).with_data_parallel(loss_name=loss.name, build_strategy=build_strategy) if FLAGS.eval: eval_compile_program = fluid.compiler.CompiledProgram(eval_prog) exe.run(startup_prog) fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel' start_iter = 0 if FLAGS.resume_checkpoint: checkpoint.load_checkpoint(exe, train_prog, FLAGS.resume_checkpoint) start_iter = checkpoint.global_step() elif cfg.pretrain_weights and fuse_bn: checkpoint.load_and_fusebn(exe, train_prog, cfg.pretrain_weights) elif cfg.pretrain_weights: checkpoint.load_pretrain(exe, train_prog, cfg.pretrain_weights) # whether output bbox is normalized in model output layer is_bbox_normalized = False if hasattr(model, 'is_bbox_normalized') and \ callable(model.is_bbox_normalized): is_bbox_normalized = model.is_bbox_normalized() train_stats = TrainingStats(cfg.log_smooth_window, train_keys) train_pyreader.start() start_time = time.time() end_time = time.time() cfg_name = os.path.basename(FLAGS.config).split('.')[0] save_dir = os.path.join(cfg.save_dir, cfg_name) time_stat = deque(maxlen=cfg.log_iter) best_box_ap_list = [0.0, 0] #[map, iter] for it in range(start_iter, cfg.max_iters): start_time = end_time end_time = time.time() time_stat.append(end_time - start_time) time_cost = np.mean(time_stat) eta_sec = (cfg.max_iters - it) * time_cost eta = str(datetime.timedelta(seconds=int(eta_sec))) outs = exe.run(train_compile_program, fetch_list=train_values) stats = {k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1])} train_stats.update(stats) logs = train_stats.log() if it % cfg.log_iter == 0: strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format( it, np.mean(outs[-1]), logs, time_cost, eta) logger.info(strs) if it > 0 and it % cfg.snapshot_iter == 0 or it == cfg.max_iters - 1: save_name = str(it) if it != cfg.max_iters - 1 else "model_final" checkpoint.save(exe, train_prog, os.path.join(save_dir, save_name)) if FLAGS.eval: # evaluation results = eval_run(exe, eval_compile_program, eval_pyreader, eval_keys, eval_values, eval_cls) resolution = None if 'mask' in results[0]: resolution = model.mask_head.resolution box_ap_stats = eval_results(results, eval_feed, cfg.metric, cfg.num_classes, resolution, is_bbox_normalized, FLAGS.output_eval) if box_ap_stats[0] > best_box_ap_list[0]: best_box_ap_list[0] = box_ap_stats[0] best_box_ap_list[1] = it checkpoint.save(exe, train_prog, os.path.join(save_dir, "best_model")) logger.info("Best test box ap: {}, in iter: {}".format( best_box_ap_list[0], best_box_ap_list[1])) train_pyreader.reset()
def main(): cfg = load_config(FLAGS.config) merge_config(FLAGS.opt) check_config(cfg) # check if set use_gpu=True in paddlepaddle cpu version check_gpu(cfg.use_gpu) # check if paddlepaddle version is satisfied check_version() main_arch = cfg.architecture dataset = cfg.TestReader['dataset'] test_images = get_test_images(FLAGS.infer_dir, FLAGS.infer_img) dataset.set_images(test_images) place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) model = create(main_arch) startup_prog = fluid.Program() infer_prog = fluid.Program() with fluid.program_guard(infer_prog, startup_prog): with fluid.unique_name.guard(): inputs_def = cfg['TestReader']['inputs_def'] inputs_def['iterable'] = True feed_vars, loader = model.build_inputs(**inputs_def) test_fetches = model.test(feed_vars) infer_prog = infer_prog.clone(True) pruned_params = FLAGS.pruned_params assert ( FLAGS.pruned_params is not None ), "FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option." pruned_params = FLAGS.pruned_params.strip().split(",") logger.info("pruned params: {}".format(pruned_params)) pruned_ratios = [float(n) for n in FLAGS.pruned_ratios.strip().split(",")] logger.info("pruned ratios: {}".format(pruned_ratios)) assert (len(pruned_params) == len(pruned_ratios) ), "The length of pruned params and pruned ratios should be equal." assert (pruned_ratios > [0] * len(pruned_ratios) and pruned_ratios < [1] * len(pruned_ratios) ), "The elements of pruned ratios should be in range (0, 1)." base_flops = flops(infer_prog) pruner = Pruner() infer_prog, _, _ = pruner.prune(infer_prog, fluid.global_scope(), params=pruned_params, ratios=pruned_ratios, place=place, only_graph=True) pruned_flops = flops(infer_prog) logger.info("pruned FLOPS: {}".format( float(base_flops - pruned_flops) / base_flops)) reader = create_reader(cfg.TestReader, devices_num=1) loader.set_sample_list_generator(reader, place) exe.run(startup_prog) if cfg.weights: checkpoint.load_checkpoint(exe, infer_prog, cfg.weights) # parse infer fetches assert cfg.metric in ['COCO', 'VOC', 'OID', 'WIDERFACE'], \ "unknown metric type {}".format(cfg.metric) extra_keys = [] if cfg['metric'] in ['COCO', 'OID']: extra_keys = ['im_info', 'im_id', 'im_shape'] if cfg['metric'] == 'VOC' or cfg['metric'] == 'WIDERFACE': extra_keys = ['im_id', 'im_shape'] keys, values, _ = parse_fetches(test_fetches, infer_prog, extra_keys) # parse dataset category if cfg.metric == 'COCO': from ppdet.utils.coco_eval import bbox2out, mask2out, get_category_info if cfg.metric == 'OID': from ppdet.utils.oid_eval import bbox2out, get_category_info if cfg.metric == "VOC": from ppdet.utils.voc_eval import bbox2out, get_category_info if cfg.metric == "WIDERFACE": from ppdet.utils.widerface_eval_utils import bbox2out, get_category_info anno_file = dataset.get_anno() with_background = dataset.with_background use_default_label = dataset.use_default_label clsid2catid, catid2name = get_category_info(anno_file, with_background, use_default_label) # whether output bbox is normalized in model output layer is_bbox_normalized = False if hasattr(model, 'is_bbox_normalized') and \ callable(model.is_bbox_normalized): is_bbox_normalized = model.is_bbox_normalized() imid2path = dataset.get_imid2path() for iter_id, data in enumerate(loader()): outs = exe.run(infer_prog, feed=data, fetch_list=values, return_numpy=False) res = { k: (np.array(v), v.recursive_sequence_lengths()) for k, v in zip(keys, outs) } logger.info('Infer iter {}'.format(iter_id)) bbox_results = None mask_results = None if 'bbox' in res: bbox_results = bbox2out([res], clsid2catid, is_bbox_normalized) if 'mask' in res: mask_results = mask2out([res], clsid2catid, model.mask_head.resolution) # visualize result im_ids = res['im_id'][0] for im_id in im_ids: image_path = imid2path[int(im_id)] image = Image.open(image_path).convert('RGB') image = visualize_results(image, int(im_id), catid2name, FLAGS.draw_threshold, bbox_results, mask_results) save_name = get_save_image_name(FLAGS.output_dir, image_path) logger.info("Detection bbox results save in {}".format(save_name)) image.save(save_name, quality=95)
def main(): """ Main evaluate function """ cfg = load_config(FLAGS.config) merge_config(FLAGS.opt) check_config(cfg) # check if set use_gpu=True in paddlepaddle cpu version check_gpu(cfg.use_gpu) # check if paddlepaddle version is satisfied check_version() main_arch = cfg.architecture multi_scale_test = getattr(cfg, 'MultiScaleTEST', None) # define executor place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) # build program model = create(main_arch) startup_prog = fluid.Program() eval_prog = fluid.Program() with fluid.program_guard(eval_prog, startup_prog): with fluid.unique_name.guard(): inputs_def = cfg['EvalReader']['inputs_def'] feed_vars, loader = model.build_inputs(**inputs_def) if multi_scale_test is None: fetches = model.eval(feed_vars) else: fetches = model.eval(feed_vars, multi_scale_test) eval_prog = eval_prog.clone(True) exe.run(startup_prog) reader = create_reader(cfg.EvalReader) # When iterable mode, set set_sample_list_generator(reader, place) loader.set_sample_list_generator(reader) dataset = cfg['EvalReader']['dataset'] # eval already exists json file if FLAGS.json_eval: logger.info( "In json_eval mode, PaddleDetection will evaluate json files in " "output_eval directly. And proposal.json, bbox.json and mask.json " "will be detected by default.") json_eval_results( cfg.metric, json_directory=FLAGS.output_eval, dataset=dataset) return pruned_params = FLAGS.pruned_params assert ( FLAGS.pruned_params is not None ), "FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option." pruned_params = FLAGS.pruned_params.strip().split(",") logger.info("pruned params: {}".format(pruned_params)) pruned_ratios = [float(n) for n in FLAGS.pruned_ratios.strip().split(",")] logger.info("pruned ratios: {}".format(pruned_ratios)) assert (len(pruned_params) == len(pruned_ratios) ), "The length of pruned params and pruned ratios should be equal." assert (pruned_ratios > [0] * len(pruned_ratios) and pruned_ratios < [1] * len(pruned_ratios) ), "The elements of pruned ratios should be in range (0, 1)." base_flops = flops(eval_prog) pruner = Pruner() eval_prog, _, _ = pruner.prune( eval_prog, fluid.global_scope(), params=pruned_params, ratios=pruned_ratios, place=place, only_graph=False) pruned_flops = flops(eval_prog) logger.info("pruned FLOPS: {}".format( float(base_flops - pruned_flops) / base_flops)) compile_program = fluid.CompiledProgram(eval_prog).with_data_parallel() assert cfg.metric != 'OID', "eval process of OID dataset \ is not supported." if cfg.metric == "WIDERFACE": raise ValueError("metric type {} does not support in tools/eval.py, " "please use tools/face_eval.py".format(cfg.metric)) assert cfg.metric in ['COCO', 'VOC'], \ "unknown metric type {}".format(cfg.metric) extra_keys = [] if cfg.metric == 'COCO': extra_keys = ['im_info', 'im_id', 'im_shape'] if cfg.metric == 'VOC': extra_keys = ['gt_bbox', 'gt_class', 'is_difficult'] keys, values, cls = parse_fetches(fetches, eval_prog, extra_keys) # whether output bbox is normalized in model output layer is_bbox_normalized = False if hasattr(model, 'is_bbox_normalized') and \ callable(model.is_bbox_normalized): is_bbox_normalized = model.is_bbox_normalized() sub_eval_prog = None sub_keys = None sub_values = None # build sub-program if 'Mask' in main_arch and multi_scale_test: sub_eval_prog = fluid.Program() with fluid.program_guard(sub_eval_prog, startup_prog): with fluid.unique_name.guard(): inputs_def = cfg['EvalReader']['inputs_def'] inputs_def['mask_branch'] = True feed_vars, eval_loader = model.build_inputs(**inputs_def) sub_fetches = model.eval( feed_vars, multi_scale_test, mask_branch=True) assert cfg.metric == 'COCO' extra_keys = ['im_id', 'im_shape'] sub_keys, sub_values, _ = parse_fetches(sub_fetches, sub_eval_prog, extra_keys) sub_eval_prog = sub_eval_prog.clone(True) # load model if 'weights' in cfg: checkpoint.load_checkpoint(exe, eval_prog, cfg.weights) resolution = None if 'Mask' in cfg.architecture: resolution = model.mask_head.resolution results = eval_run( exe, compile_program, loader, keys, values, cls, cfg, sub_eval_prog, sub_keys, sub_values, resolution=resolution) # if map_type not set, use default 11point, only use in VOC eval map_type = cfg.map_type if 'map_type' in cfg else '11point' eval_results( results, cfg.metric, cfg.num_classes, resolution, is_bbox_normalized, FLAGS.output_eval, map_type, dataset=dataset)
def main(): env = os.environ cfg = load_config(FLAGS.config) merge_config(FLAGS.opt) check_config(cfg) # check if set use_gpu=True in paddlepaddle cpu version check_gpu(cfg.use_gpu) main_arch = cfg.architecture if cfg.use_gpu: devices_num = fluid.core.get_cuda_device_count() else: devices_num = int(os.environ.get('CPU_NUM', 1)) if 'FLAGS_selected_gpus' in env: device_id = int(env['FLAGS_selected_gpus']) else: device_id = 0 place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) # build program model = create(main_arch) inputs_def = cfg['TrainReader']['inputs_def'] train_feed_vars, train_loader = model.build_inputs(**inputs_def) train_fetches = model.train(train_feed_vars) loss = train_fetches['loss'] start_iter = 0 train_reader = create_reader(cfg.TrainReader, (cfg.max_iters - start_iter) * devices_num, cfg) train_loader.set_sample_list_generator(train_reader, place) # get all student variables student_vars = [] for v in fluid.default_main_program().list_vars(): try: student_vars.append((v.name, v.shape)) except: pass # uncomment the following lines to print all student variables # print("="*50 + "student_model_vars" + "="*50) # print(student_vars) eval_prog = fluid.Program() with fluid.program_guard(eval_prog, fluid.default_startup_program()): with fluid.unique_name.guard(): model = create(main_arch) inputs_def = cfg['EvalReader']['inputs_def'] test_feed_vars, eval_loader = model.build_inputs(**inputs_def) fetches = model.eval(test_feed_vars) eval_prog = eval_prog.clone(True) eval_reader = create_reader(cfg.EvalReader) eval_loader.set_sample_list_generator(eval_reader, place) # parse eval fetches extra_keys = [] if cfg.metric == 'COCO': extra_keys = ['im_info', 'im_id', 'im_shape'] if cfg.metric == 'VOC': extra_keys = ['gt_bbox', 'gt_class', 'is_difficult'] eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog, extra_keys) teacher_cfg = load_config(FLAGS.teacher_config) merge_config(FLAGS.opt) teacher_arch = teacher_cfg.architecture teacher_program = fluid.Program() teacher_startup_program = fluid.Program() with fluid.program_guard(teacher_program, teacher_startup_program): with fluid.unique_name.guard(): teacher_feed_vars = OrderedDict() for name, var in train_feed_vars.items(): teacher_feed_vars[name] = teacher_program.global_block( )._clone_variable(var, force_persistable=False) model = create(teacher_arch) train_fetches = model.train(teacher_feed_vars) teacher_loss = train_fetches['loss'] # get all teacher variables teacher_vars = [] for v in teacher_program.list_vars(): try: teacher_vars.append((v.name, v.shape)) except: pass # uncomment the following lines to print all teacher variables # print("="*50 + "teacher_model_vars" + "="*50) # print(teacher_vars) exe.run(teacher_startup_program) assert FLAGS.teacher_pretrained, "teacher_pretrained should be set" checkpoint.load_params(exe, teacher_program, FLAGS.teacher_pretrained) teacher_program = teacher_program.clone(for_test=True) cfg = load_config(FLAGS.config) merge_config(FLAGS.opt) data_name_map = { 'target0': 'target0', 'target1': 'target1', 'target2': 'target2', 'image': 'image', 'gt_bbox': 'gt_bbox', 'gt_class': 'gt_class', 'gt_score': 'gt_score' } merge(teacher_program, fluid.default_main_program(), data_name_map, place) yolo_output_names = [ 'strided_slice_0.tmp_0', 'strided_slice_1.tmp_0', 'strided_slice_2.tmp_0', 'strided_slice_3.tmp_0', 'strided_slice_4.tmp_0', 'transpose_0.tmp_0', 'strided_slice_5.tmp_0', 'strided_slice_6.tmp_0', 'strided_slice_7.tmp_0', 'strided_slice_8.tmp_0', 'strided_slice_9.tmp_0', 'transpose_2.tmp_0', 'strided_slice_10.tmp_0', 'strided_slice_11.tmp_0', 'strided_slice_12.tmp_0', 'strided_slice_13.tmp_0', 'strided_slice_14.tmp_0', 'transpose_4.tmp_0' ] distill_pairs = [['teacher_conv2d_6.tmp_1', 'conv2d_20.tmp_1'], ['teacher_conv2d_14.tmp_1', 'conv2d_28.tmp_1'], ['teacher_conv2d_22.tmp_1', 'conv2d_36.tmp_1']] distill_loss = l2_distill( distill_pairs, 100) if not cfg.use_fine_grained_loss else split_distill( yolo_output_names, 1000) loss = distill_loss + loss lr_builder = create('LearningRate') optim_builder = create('OptimizerBuilder') lr = lr_builder() opt = optim_builder(lr) opt.minimize(loss) exe.run(fluid.default_startup_program()) fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel' ignore_params = cfg.finetune_exclude_pretrained_params \ if 'finetune_exclude_pretrained_params' in cfg else [] if FLAGS.resume_checkpoint: checkpoint.load_checkpoint(exe, fluid.default_main_program(), FLAGS.resume_checkpoint) start_iter = checkpoint.global_step() elif cfg.pretrain_weights and fuse_bn and not ignore_params: checkpoint.load_and_fusebn(exe, fluid.default_main_program(), cfg.pretrain_weights) elif cfg.pretrain_weights: checkpoint.load_params(exe, fluid.default_main_program(), cfg.pretrain_weights, ignore_params=ignore_params) build_strategy = fluid.BuildStrategy() build_strategy.fuse_all_reduce_ops = False build_strategy.fuse_all_optimizer_ops = False # only enable sync_bn in multi GPU devices sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn' build_strategy.sync_batch_norm = sync_bn and devices_num > 1 \ and cfg.use_gpu exec_strategy = fluid.ExecutionStrategy() # iteration number when CompiledProgram tries to drop local execution scopes. # Set it to be 1 to save memory usages, so that unused variables in # local execution scopes can be deleted after each iteration. exec_strategy.num_iteration_per_drop_scope = 1 parallel_main = fluid.CompiledProgram( fluid.default_main_program()).with_data_parallel( loss_name=loss.name, build_strategy=build_strategy, exec_strategy=exec_strategy) compiled_eval_prog = fluid.compiler.CompiledProgram(eval_prog) # whether output bbox is normalized in model output layer is_bbox_normalized = False if hasattr(model, 'is_bbox_normalized') and \ callable(model.is_bbox_normalized): is_bbox_normalized = model.is_bbox_normalized() map_type = cfg.map_type if 'map_type' in cfg else '11point' best_box_ap_list = [0.0, 0] #[map, iter] cfg_name = os.path.basename(FLAGS.config).split('.')[0] save_dir = os.path.join(cfg.save_dir, cfg_name) train_loader.start() for step_id in range(start_iter, cfg.max_iters): teacher_loss_np, distill_loss_np, loss_np, lr_np = exe.run( parallel_main, fetch_list=[ 'teacher_' + teacher_loss.name, distill_loss.name, loss.name, lr.name ]) if step_id % cfg.log_iter == 0: logger.info( "step {} lr {:.6f}, loss {:.6f}, distill_loss {:.6f}, teacher_loss {:.6f}" .format(step_id, lr_np[0], loss_np[0], distill_loss_np[0], teacher_loss_np[0])) if step_id % cfg.snapshot_iter == 0 and step_id != 0 or step_id == cfg.max_iters - 1: save_name = str( step_id) if step_id != cfg.max_iters - 1 else "model_final" checkpoint.save(exe, fluid.default_main_program(), os.path.join(save_dir, save_name)) if FLAGS.save_inference: feeded_var_names = ['image', 'im_size'] targets = list(fetches.values()) fluid.io.save_inference_model(save_dir + '/infer', feeded_var_names, targets, exe, eval_prog) # eval results = eval_run(exe, compiled_eval_prog, eval_loader, eval_keys, eval_values, eval_cls, cfg) resolution = None box_ap_stats = eval_results(results, cfg.metric, cfg.num_classes, resolution, is_bbox_normalized, FLAGS.output_eval, map_type, cfg['EvalReader']['dataset']) if box_ap_stats[0] > best_box_ap_list[0]: best_box_ap_list[0] = box_ap_stats[0] best_box_ap_list[1] = step_id checkpoint.save(exe, fluid.default_main_program(), os.path.join(save_dir, "best_model")) if FLAGS.save_inference: feeded_var_names = ['image', 'im_size'] targets = list(fetches.values()) fluid.io.save_inference_model(save_dir + '/infer', feeded_var_names, targets, exe, eval_prog) logger.info("Best test box ap: {}, in step: {}".format( best_box_ap_list[0], best_box_ap_list[1])) train_loader.reset()
def main(): env = os.environ FLAGS.dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env if FLAGS.dist: trainer_id = int(env['PADDLE_TRAINER_ID']) import random local_seed = (99 + trainer_id) random.seed(local_seed) np.random.seed(local_seed) cfg = load_config(FLAGS.config) merge_config(FLAGS.opt) check_config(cfg) # check if set use_gpu=True in paddlepaddle cpu version check_gpu(cfg.use_gpu) # check if paddlepaddle version is satisfied check_version() main_arch = cfg.architecture if cfg.use_gpu: devices_num = fluid.core.get_cuda_device_count() else: devices_num = int(os.environ.get('CPU_NUM', 1)) if 'FLAGS_selected_gpus' in env: device_id = int(env['FLAGS_selected_gpus']) else: device_id = 0 place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) lr_builder = create('LearningRate') optim_builder = create('OptimizerBuilder') # build program startup_prog = fluid.Program() train_prog = fluid.Program() with fluid.program_guard(train_prog, startup_prog): with fluid.unique_name.guard(): model = create(main_arch) if FLAGS.fp16: assert (getattr(model.backbone, 'norm_type', None) != 'affine_channel'), \ '--fp16 currently does not support affine channel, ' \ ' please modify backbone settings to use batch norm' with mixed_precision_context(FLAGS.loss_scale, FLAGS.fp16) as ctx: inputs_def = cfg['TrainReader']['inputs_def'] feed_vars, train_loader = model.build_inputs(**inputs_def) train_fetches = model.train(feed_vars) loss = train_fetches['loss'] if FLAGS.fp16: loss *= ctx.get_loss_scale_var() lr = lr_builder() optimizer = optim_builder(lr) optimizer.minimize(loss) if FLAGS.fp16: loss /= ctx.get_loss_scale_var() # parse train fetches train_keys, train_values, _ = parse_fetches(train_fetches) train_values.append(lr) if FLAGS.print_params: param_delimit_str = '-' * 20 + "All parameters in current graph" + '-' * 20 print(param_delimit_str) for block in train_prog.blocks: for param in block.all_parameters(): print("parameter name: {}\tshape: {}".format(param.name, param.shape)) print('-' * len(param_delimit_str)) return if FLAGS.eval: eval_prog = fluid.Program() with fluid.program_guard(eval_prog, startup_prog): with fluid.unique_name.guard(): model = create(main_arch) inputs_def = cfg['EvalReader']['inputs_def'] feed_vars, eval_loader = model.build_inputs(**inputs_def) fetches = model.eval(feed_vars) eval_prog = eval_prog.clone(True) eval_reader = create_reader(cfg.EvalReader) eval_loader.set_sample_list_generator(eval_reader, place) # parse eval fetches extra_keys = [] if cfg.metric == 'COCO': extra_keys = ['im_info', 'im_id', 'im_shape'] if cfg.metric == 'VOC': extra_keys = ['gt_bbox', 'gt_class', 'is_difficult'] if cfg.metric == 'WIDERFACE': extra_keys = ['im_id', 'im_shape', 'gt_bbox'] eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog, extra_keys) # compile program for multi-devices build_strategy = fluid.BuildStrategy() build_strategy.fuse_all_optimizer_ops = False build_strategy.fuse_elewise_add_act_ops = True # only enable sync_bn in multi GPU devices sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn' build_strategy.sync_batch_norm = sync_bn and devices_num > 1 \ and cfg.use_gpu exec_strategy = fluid.ExecutionStrategy() # iteration number when CompiledProgram tries to drop local execution scopes. # Set it to be 1 to save memory usages, so that unused variables in # local execution scopes can be deleted after each iteration. exec_strategy.num_iteration_per_drop_scope = 1 if FLAGS.dist: dist_utils.prepare_for_multi_process(exe, build_strategy, startup_prog, train_prog) exec_strategy.num_threads = 1 exe.run(startup_prog) fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel' start_iter = 0 if cfg.pretrain_weights: checkpoint.load_params(exe, train_prog, cfg.pretrain_weights) pruned_params = FLAGS.pruned_params assert FLAGS.pruned_params is not None, \ "FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option." pruned_params = FLAGS.pruned_params.strip().split(",") logger.info("pruned params: {}".format(pruned_params)) pruned_ratios = [float(n) for n in FLAGS.pruned_ratios.strip().split(",")] logger.info("pruned ratios: {}".format(pruned_ratios)) assert len(pruned_params) == len(pruned_ratios), \ "The length of pruned params and pruned ratios should be equal." assert (pruned_ratios > [0] * len(pruned_ratios) and pruned_ratios < [1] * len(pruned_ratios) ), "The elements of pruned ratios should be in range (0, 1)." assert FLAGS.prune_criterion in ['l1_norm', 'geometry_median'], \ "unsupported prune criterion {}".format(FLAGS.prune_criterion) pruner = Pruner(criterion=FLAGS.prune_criterion) train_prog = pruner.prune( train_prog, fluid.global_scope(), params=pruned_params, ratios=pruned_ratios, place=place, only_graph=False)[0] compiled_train_prog = fluid.CompiledProgram(train_prog).with_data_parallel( loss_name=loss.name, build_strategy=build_strategy, exec_strategy=exec_strategy) if FLAGS.eval: base_flops = flops(eval_prog) eval_prog = pruner.prune( eval_prog, fluid.global_scope(), params=pruned_params, ratios=pruned_ratios, place=place, only_graph=True)[0] pruned_flops = flops(eval_prog) logger.info("FLOPs -{}; total FLOPs: {}; pruned FLOPs: {}".format( float(base_flops - pruned_flops) / base_flops, base_flops, pruned_flops)) compiled_eval_prog = fluid.compiler.CompiledProgram(eval_prog) if FLAGS.resume_checkpoint: checkpoint.load_checkpoint(exe, train_prog, FLAGS.resume_checkpoint) start_iter = checkpoint.global_step() train_reader = create_reader(cfg.TrainReader, (cfg.max_iters - start_iter) * devices_num, cfg) train_loader.set_sample_list_generator(train_reader, place) # whether output bbox is normalized in model output layer is_bbox_normalized = False if hasattr(model, 'is_bbox_normalized') and \ callable(model.is_bbox_normalized): is_bbox_normalized = model.is_bbox_normalized() # if map_type not set, use default 11point, only use in VOC eval map_type = cfg.map_type if 'map_type' in cfg else '11point' train_stats = TrainingStats(cfg.log_smooth_window, train_keys) train_loader.start() start_time = time.time() end_time = time.time() cfg_name = os.path.basename(FLAGS.config).split('.')[0] save_dir = os.path.join(cfg.save_dir, cfg_name) time_stat = deque(maxlen=cfg.log_smooth_window) best_box_ap_list = [0.0, 0] #[map, iter] # use tb-paddle to log data if FLAGS.use_tb: from tb_paddle import SummaryWriter tb_writer = SummaryWriter(FLAGS.tb_log_dir) tb_loss_step = 0 tb_mAP_step = 0 if FLAGS.eval: # evaluation results = eval_run(exe, compiled_eval_prog, eval_loader, eval_keys, eval_values, eval_cls, cfg) resolution = None if 'mask' in results[0]: resolution = model.mask_head.resolution dataset = cfg['EvalReader']['dataset'] box_ap_stats = eval_results( results, cfg.metric, cfg.num_classes, resolution, is_bbox_normalized, FLAGS.output_eval, map_type, dataset=dataset) for it in range(start_iter, cfg.max_iters): start_time = end_time end_time = time.time() time_stat.append(end_time - start_time) time_cost = np.mean(time_stat) eta_sec = (cfg.max_iters - it) * time_cost eta = str(datetime.timedelta(seconds=int(eta_sec))) outs = exe.run(compiled_train_prog, fetch_list=train_values) stats = {k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1])} # use tb-paddle to log loss if FLAGS.use_tb: if it % cfg.log_iter == 0: for loss_name, loss_value in stats.items(): tb_writer.add_scalar(loss_name, loss_value, tb_loss_step) tb_loss_step += 1 train_stats.update(stats) logs = train_stats.log() if it % cfg.log_iter == 0 and (not FLAGS.dist or trainer_id == 0): strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format( it, np.mean(outs[-1]), logs, time_cost, eta) logger.info(strs) if (it > 0 and it % cfg.snapshot_iter == 0 or it == cfg.max_iters - 1) \ and (not FLAGS.dist or trainer_id == 0): save_name = str(it) if it != cfg.max_iters - 1 else "model_final" checkpoint.save(exe, train_prog, os.path.join(save_dir, save_name)) if FLAGS.eval: # evaluation results = eval_run( exe, compiled_eval_prog, eval_loader, eval_keys, eval_values, eval_cls, cfg=cfg) resolution = None if 'mask' in results[0]: resolution = model.mask_head.resolution box_ap_stats = eval_results( results, cfg.metric, cfg.num_classes, resolution, is_bbox_normalized, FLAGS.output_eval, map_type, dataset=dataset) # use tb_paddle to log mAP if FLAGS.use_tb: tb_writer.add_scalar("mAP", box_ap_stats[0], tb_mAP_step) tb_mAP_step += 1 if box_ap_stats[0] > best_box_ap_list[0]: best_box_ap_list[0] = box_ap_stats[0] best_box_ap_list[1] = it checkpoint.save(exe, train_prog, os.path.join(save_dir, "best_model")) logger.info("Best test box ap: {}, in iter: {}".format( best_box_ap_list[0], best_box_ap_list[1])) train_loader.reset()
def main(): cfg = load_config(FLAGS.config) if 'architecture' in cfg: main_arch = cfg.architecture else: raise ValueError("'architecture' not specified in config file.") merge_config(FLAGS.opt) # check if set use_gpu=True in paddlepaddle cpu version check_gpu(cfg.use_gpu) if 'test_feed' not in cfg: test_feed = create(main_arch + 'TestFeed') else: test_feed = create(cfg.test_feed) test_images = get_test_images(FLAGS.infer_dir, FLAGS.infer_img) test_feed.dataset.add_images(test_images) place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) model = create(main_arch) startup_prog = fluid.Program() infer_prog = fluid.Program() with fluid.program_guard(infer_prog, startup_prog): with fluid.unique_name.guard(): _, feed_vars = create_feed(test_feed, use_pyreader=False) test_fetches = model.test(feed_vars) infer_prog = infer_prog.clone(True) reader = create_reader(test_feed) feeder = fluid.DataFeeder(place=place, feed_list=feed_vars.values()) exe.run(startup_prog) if cfg.weights: checkpoint.load_checkpoint(exe, infer_prog, cfg.weights) if FLAGS.save_inference_model: save_infer_model(FLAGS, exe, feed_vars, test_fetches, infer_prog) # parse infer fetches assert cfg.metric in ['COCO', 'VOC'], \ "unknown metric type {}".format(cfg.metric) extra_keys = [] if cfg['metric'] == 'COCO': extra_keys = ['im_info', 'im_id', 'im_shape'] if cfg['metric'] == 'VOC': extra_keys = ['im_id', 'im_shape'] keys, values, _ = parse_fetches(test_fetches, infer_prog, extra_keys) # parse dataset category if cfg.metric == 'COCO': from ppdet.utils.coco_eval import bbox2out, mask2out, get_category_info if cfg.metric == "VOC": from ppdet.utils.voc_eval import bbox2out, get_category_info anno_file = getattr(test_feed.dataset, 'annotation', None) with_background = getattr(test_feed, 'with_background', True) use_default_label = getattr(test_feed, 'use_default_label', False) clsid2catid, catid2name = get_category_info(anno_file, with_background, use_default_label) # whether output bbox is normalized in model output layer is_bbox_normalized = False if hasattr(model, 'is_bbox_normalized') and \ callable(model.is_bbox_normalized): is_bbox_normalized = model.is_bbox_normalized() imid2path = reader.imid2path for iter_id, data in enumerate(reader()): outs = exe.run(infer_prog, feed=feeder.feed(data), fetch_list=values, return_numpy=False) res = { k: (np.array(v), v.recursive_sequence_lengths()) for k, v in zip(keys, outs) } logger.info('Infer iter {}'.format(iter_id)) bbox_results = None mask_results = None if 'bbox' in res: bbox_results = bbox2out([res], clsid2catid, is_bbox_normalized) if 'mask' in res: mask_results = mask2out([res], clsid2catid, model.mask_head.resolution) # visualize result im_ids = res['im_id'][0] for im_id in im_ids: image_path = imid2path[int(im_id)] image = Image.open(image_path).convert('RGB') image = visualize_results(image, int(im_id), catid2name, FLAGS.draw_threshold, bbox_results, mask_results) save_name = get_save_image_name(FLAGS.output_dir, image_path) logger.info("Detection bbox results save in {}".format(save_name)) image.save(save_name, quality=95)
def main(): if FLAGS.eval is False: raise ValueError( "Currently only supports `--eval==True` while training in `quantization`." ) env = os.environ FLAGS.dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env if FLAGS.dist: trainer_id = int(env['PADDLE_TRAINER_ID']) import random local_seed = (99 + trainer_id) random.seed(local_seed) np.random.seed(local_seed) cfg = load_config(FLAGS.config) merge_config(FLAGS.opt) check_config(cfg) # check if set use_gpu=True in paddlepaddle cpu version check_gpu(cfg.use_gpu) # check if paddlepaddle version is satisfied check_version() main_arch = cfg.architecture if cfg.use_gpu: devices_num = fluid.core.get_cuda_device_count() else: devices_num = int(os.environ.get('CPU_NUM', 1)) if 'FLAGS_selected_gpus' in env: device_id = int(env['FLAGS_selected_gpus']) else: device_id = 0 place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) lr_builder = create('LearningRate') optim_builder = create('OptimizerBuilder') # build program startup_prog = fluid.Program() train_prog = fluid.Program() with fluid.program_guard(train_prog, startup_prog): with fluid.unique_name.guard(): model = create(main_arch) inputs_def = cfg['TrainReader']['inputs_def'] feed_vars, train_loader = model.build_inputs(**inputs_def) train_fetches = model.train(feed_vars) loss = train_fetches['loss'] lr = lr_builder() optimizer = optim_builder(lr) optimizer.minimize(loss) # parse train fetches train_keys, train_values, _ = parse_fetches(train_fetches) train_values.append(lr) if FLAGS.eval: eval_prog = fluid.Program() with fluid.program_guard(eval_prog, startup_prog): with fluid.unique_name.guard(): model = create(main_arch) inputs_def = cfg['EvalReader']['inputs_def'] feed_vars, eval_loader = model.build_inputs(**inputs_def) fetches = model.eval(feed_vars) eval_prog = eval_prog.clone(True) eval_reader = create_reader(cfg.EvalReader) # When iterable mode, set set_sample_list_generator(eval_reader, place) eval_loader.set_sample_list_generator(eval_reader) # parse eval fetches extra_keys = [] if cfg.metric == 'COCO': extra_keys = ['im_info', 'im_id', 'im_shape'] if cfg.metric == 'VOC': extra_keys = ['gt_bbox', 'gt_class', 'is_difficult'] if cfg.metric == 'WIDERFACE': extra_keys = ['im_id', 'im_shape', 'gt_bbox'] eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog, extra_keys) # compile program for multi-devices build_strategy = fluid.BuildStrategy() build_strategy.fuse_all_optimizer_ops = False build_strategy.fuse_elewise_add_act_ops = True build_strategy.fuse_all_reduce_ops = False # only enable sync_bn in multi GPU devices sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn' sync_bn = False build_strategy.sync_batch_norm = sync_bn and devices_num > 1 \ and cfg.use_gpu exec_strategy = fluid.ExecutionStrategy() # iteration number when CompiledProgram tries to drop local execution scopes. # Set it to be 1 to save memory usages, so that unused variables in # local execution scopes can be deleted after each iteration. exec_strategy.num_iteration_per_drop_scope = 1 if FLAGS.dist: dist_utils.prepare_for_multi_process(exe, build_strategy, startup_prog, train_prog) exec_strategy.num_threads = 1 exe.run(startup_prog) not_quant_pattern = [] if FLAGS.not_quant_pattern: not_quant_pattern = FLAGS.not_quant_pattern config = { 'weight_quantize_type': 'channel_wise_abs_max', 'activation_quantize_type': 'moving_average_abs_max', 'quantize_op_types': ['depthwise_conv2d', 'mul', 'conv2d'], 'not_quant_pattern': not_quant_pattern } ignore_params = cfg.finetune_exclude_pretrained_params \ if 'finetune_exclude_pretrained_params' in cfg else [] fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel' if not FLAGS.resume_checkpoint: if cfg.pretrain_weights and fuse_bn and not ignore_params: checkpoint.load_and_fusebn(exe, train_prog, cfg.pretrain_weights) elif cfg.pretrain_weights: checkpoint.load_params( exe, train_prog, cfg.pretrain_weights, ignore_params=ignore_params) # insert quantize op in train_prog, return type is CompiledProgram train_prog_quant = quant_aware(train_prog, place, config, for_test=False) compiled_train_prog = train_prog_quant.with_data_parallel( loss_name=loss.name, build_strategy=build_strategy, exec_strategy=exec_strategy) if FLAGS.eval: # insert quantize op in eval_prog eval_prog = quant_aware(eval_prog, place, config, for_test=True) compiled_eval_prog = fluid.CompiledProgram(eval_prog) start_iter = 0 if FLAGS.resume_checkpoint: checkpoint.load_checkpoint(exe, eval_prog, FLAGS.resume_checkpoint) load_global_step(exe, train_prog, FLAGS.resume_checkpoint) start_iter = checkpoint.global_step() train_reader = create_reader(cfg.TrainReader, (cfg.max_iters - start_iter) * devices_num) # When iterable mode, set set_sample_list_generator(train_reader, place) train_loader.set_sample_list_generator(train_reader) # whether output bbox is normalized in model output layer is_bbox_normalized = False if hasattr(model, 'is_bbox_normalized') and \ callable(model.is_bbox_normalized): is_bbox_normalized = model.is_bbox_normalized() # if map_type not set, use default 11point, only use in VOC eval map_type = cfg.map_type if 'map_type' in cfg else '11point' train_stats = TrainingStats(cfg.log_iter, train_keys) train_loader.start() start_time = time.time() end_time = time.time() cfg_name = os.path.basename(FLAGS.config).split('.')[0] save_dir = os.path.join(cfg.save_dir, cfg_name) time_stat = deque(maxlen=cfg.log_iter) best_box_ap_list = [0.0, 0] #[map, iter] for it in range(start_iter, cfg.max_iters): start_time = end_time end_time = time.time() time_stat.append(end_time - start_time) time_cost = np.mean(time_stat) eta_sec = (cfg.max_iters - it) * time_cost eta = str(datetime.timedelta(seconds=int(eta_sec))) outs = exe.run(compiled_train_prog, fetch_list=train_values) stats = {k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1])} train_stats.update(stats) logs = train_stats.log() if it % cfg.log_iter == 0 and (not FLAGS.dist or trainer_id == 0): strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format( it, np.mean(outs[-1]), logs, time_cost, eta) logger.info(strs) if (it > 0 and it % cfg.snapshot_iter == 0 or it == cfg.max_iters - 1) \ and (not FLAGS.dist or trainer_id == 0): save_name = str(it) if it != cfg.max_iters - 1 else "model_final" save_checkpoint(exe, eval_prog, os.path.join(save_dir, save_name), train_prog) if FLAGS.eval: # evaluation results = eval_run( exe, compiled_eval_prog, eval_loader, eval_keys, eval_values, eval_cls, cfg=cfg) resolution = None if 'mask' in results[0]: resolution = model.mask_head.resolution box_ap_stats = eval_results( results, cfg.metric, cfg.num_classes, resolution, is_bbox_normalized, FLAGS.output_eval, map_type, cfg['EvalReader']['dataset']) if box_ap_stats[0] > best_box_ap_list[0]: best_box_ap_list[0] = box_ap_stats[0] best_box_ap_list[1] = it save_checkpoint(exe, eval_prog, os.path.join(save_dir, "best_model"), train_prog) logger.info("Best test box ap: {}, in iter: {}".format( best_box_ap_list[0], best_box_ap_list[1])) train_loader.reset()
def main(): # 配置 cfg = load_config(FLAGS.config) merge_config(FLAGS.opt) if 'architecture' in cfg: main_arch = cfg.architecture else: raise ValueError("'architecture' not specified in config file.") check_gpu(cfg.use_gpu) check_version() # 执行器 place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) # 模型 lr_builder = create('LearningRate') optim_builder = create('OptimizerBuilder') startup_prog = fluid.Program() train_prog = fluid.Program() with fluid.program_guard(train_prog, startup_prog): with fluid.unique_name.guard(): model = create(main_arch) inputs_def = cfg.TrainReader['inputs_def'] feed_vars, train_loader = model.build_inputs(**inputs_def) train_fetches = model.train(feed_vars) loss = train_fetches['loss'] lr = lr_builder() optimizer = optim_builder(lr) optimizer.minimize(loss) train_keys, train_values, _ = parse_fetches(train_fetches) train_values.append(lr) if FLAGS.eval: eval_prog = fluid.Program() with fluid.program_guard(eval_prog, startup_prog): with fluid.unique_name.guard(): model = create(main_arch) inputs_def = cfg.EvalReader['inputs_def'] feed_vars, eval_loader = model.build_inputs(**inputs_def) fetches = model.eval(feed_vars) eval_prog = eval_prog.clone(True) extra_keys = ['gt_bbox', 'gt_class', 'is_difficult'] eval_keys, eval_values, _ = parse_fetches(fetches, eval_prog, extra_keys) eval_reader = create_reader(cfg.EvalReader) eval_loader.set_sample_list_generator(eval_reader, place) ##### 运行 #### exe.run(startup_prog) ## 恢复与迁移 ignore_params = cfg.finetune_exclude_pretrained_params \ if 'finetune_exclude_pretrained_params' in cfg else [] start_iter = 0 if FLAGS.resume_checkpoint: checkpoint.load_checkpoint(exe, train_prog, FLAGS.resume_checkpoint) start_iter = checkpoint.global_step() + 1 elif cfg.pretrain_weights: checkpoint.load_params( exe, train_prog, cfg.pretrain_weights, ignore_params=ignore_params) ## 数据迭代器 train_reader = create_reader(cfg.TrainReader, cfg.max_iters - start_iter, cfg) train_loader.set_sample_list_generator(train_reader, place) ## 训练循环 train_loader.start() # 过程跟踪 train_stats = TrainingStats(cfg.log_smooth_window, train_keys) start_time = time.time() end_time = time.time() time_stat = deque(maxlen=cfg.log_smooth_window) cfg_name = os.path.basename(FLAGS.config).split('.')[0] save_dir = os.path.join(cfg.save_dir, cfg_name) best_box_ap_list = [0.0, 0] if FLAGS.use_vdl: log_writter = LogWriter(FLAGS.vdl_log_dir, sync_cycle=5) with log_writter.mode("train") as vdl_logger: train_scalar_loss = vdl_logger.scalar(tag="loss") with log_writter.mode("val") as vdl_logger: val_scalar_map = vdl_logger.scalar(tag="map") for it in range(start_iter, cfg.max_iters): # 运行程序 outs = exe.run(train_prog, fetch_list=train_values) stats = {k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1])} # 日志与可视化窗口 start_time = end_time end_time = time.time() time_stat.append(end_time - start_time) time_cost = np.mean(time_stat) eta_sec = (cfg.max_iters - it) * time_cost eta = str(datetime.timedelta(seconds=int(eta_sec))) train_stats.update(stats) logs = train_stats.log() if it % cfg.log_iter == 0: # log strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format( it, np.mean(outs[-1]), logs, time_cost, eta) logger.info(strs) # vdl if FLAGS.use_vdl: train_scalar_loss.add_record(it//cfg.log_iter, stats['loss']) # 模型保存与评价窗口 if (it > 0 and it % cfg.snapshot_iter == 0 or it == cfg.max_iters - 1): # 模型保存 save_name = str(it) if it != cfg.max_iters - 1 else "final" checkpoint.save(exe, train_prog, os.path.join(save_dir, save_name)) ## 模型评价 if FLAGS.eval: current_step = it//cfg.snapshot_iter if it % cfg.snapshot_iter == 0 \ else it//cfg.snapshot_iter+1 ## 训练集评价 ## 验证集评价 results = eval_run(exe, eval_prog, eval_loader, eval_keys, eval_values) box_ap_stats = eval_results(results, cfg.num_classes) logger.info("eval box op: {}, in iter: {}".format( box_ap_stats, it)) if FLAGS.use_vdl: val_scalar_map.add_record(current_step, box_ap_stats) ## 保存最佳模型 if box_ap_stats > best_box_ap_list[0]: best_box_ap_list[0] = box_ap_stats best_box_ap_list[1] = it checkpoint.save(exe, train_prog, os.path.join(save_dir, "best_model")) # 日志 logger.info("Best eval box ap: {}, in iter: {}".format( best_box_ap_list[0], best_box_ap_list[1])) train_loader.reset()