def plotCircles(objectTable, margins): margins = checkMargins(margins) ppgplot.pgsci(3) ppgplot.pgsfs(2) index = 0 print ("Margins:", margins) for obj in objectTable: ra = obj["ra"] dec = obj["dec"] c = obj["class"] if ra > margins[1][0] and ra < margins[0][0] and dec < margins[0][1] and dec > margins[1][1]: # print index, ra, dec, x, y, c index += 1 colour = 1 if c == -9: colour = 2 # Red = Saturated if c == 1: colour = 4 # Blue = Galaxy if c == -3: colour = 5 # Cyan = Probable Galaxy if c == -1: colour = 3 # Green = Star if c == -2: colour = 8 # Orange = Probable Star if c == 0: colour = 2 # Red = Noise ppgplot.pgsci(colour) ppgplot.pgcirc(obj["x"], obj["y"], 5 + (5 * obj["pStar"])) return index + 1
def redraw(): ppgplot.pgslct(imagePlot['pgplotHandle']) ppgplot.pgslw(3) ppgplot.pggray(boostedImage, xlimits[0], xlimits[1] - 1, ylimits[0], ylimits[1] - 1, imageMinMax[0], imageMinMax[1], imagePlot['pgPlotTransform']) if plotSources: plotCircles(dr2Objects, margins) if plotHa: reduceddr2cat = [] for selected in extendedHaSources: reduceddr2cat.append(dr2Objects[selected]) plotCircles(reduceddr2cat, margins) if plotGrid: print("Plotting grid") ppgplot.pgsci(6) xVals = [p[0] for p in pixelGrid] yVals = [p[1] for p in pixelGrid] ppgplot.pgpt(xVals, yVals, 2) if plotPointings: ppgplot.pgsfs(2) ppgplot.pgslw(10) for p in pointings: if p['type'] == "Maximum": ppgplot.pgsci(2) if p['type'] == "Minimum": ppgplot.pgsci(4) ppgplot.pgcirc(p['x'], p['y'], 30) ppgplot.pgslw(1) if plotBrightStars: ppgplot.pgsci(3) ppgplot.pgsfs(2) ppgplot.pgslw(10) for b in brightStars: ppgplot.pgcirc(b['x'], b['y'], 40)
def plotgal(xg,yg,final,finalsf,ncl): ppgplot.pgslw(6) ppgplot.pgsls(1) xmin = (-1.*c.pscale[ncl]*(c.xc[ncl]-1)) xmax = (c.pscale[ncl]*(c.xmax[ncl]-c.xc[ncl])) ymin = (-1.*c.pscale[ncl]*(c.yc[ncl]-1)) ymax = (c.pscale[ncl]*(c.ymax[ncl]-c.yc[ncl])) ppgplot.pgbox("",0.0,0,"L",0.0,0) dx=5. ppgplot.pgenv(xmin-dx,xmax+dx,ymin-dx,ymax+dx,0) ppgplot.pglab("\gD DEC (\")","\gD RA (\")","") ppgplot.pgtext(-4,-4,"X") r = (0.5*c.r200pix[ncl]*c.pscale[ncl]) ppgplot.pgslw(1) ppgplot.pgsls(2) ppgplot.pgsfs(2) ppgplot.pgcirc(0,0,r) #print "cluster ",ncl," r200: ",c.r200pix[ncl],c.r200Mpc[ncl], " Mpc" ppgplot.pgslw(3) ppgplot.pgsls(1) x = (xg - c.xc[ncl])*c.pscale[ncl] y = (yg - c.yc[ncl])*c.pscale[ncl] x = (N.compress((final > 0) & (finalsf < 1), xg) - c.xc[ncl])*c.pscale[ncl] y = (N.compress((final > 0) & (finalsf < 1), yg) - c.yc[ncl])*c.pscale[ncl] ppgplot.pgpt(x,y,22) x = (N.compress((final > 0) & (finalsf > 0), xg) - c.xc[ncl])*c.pscale[ncl] y = (N.compress((final > 0) & (finalsf > 0), yg) - c.yc[ncl])*c.pscale[ncl] ppgplot.pgpt(x,y,18)
def redraw(): ppgplot.pgslct(imagePlot["pgplotHandle"]) ppgplot.pgslw(3) ppgplot.pggray( boostedImage, xlimits[0], xlimits[1] - 1, ylimits[0], ylimits[1] - 1, imageMinMax[0], imageMinMax[1], imagePlot["pgPlotTransform"], ) if plotSources: plotCircles(dr2Objects, margins) if plotHa: reduceddr2cat = [] for selected in extendedHaSources: reduceddr2cat.append(dr2Objects[selected]) plotCircles(reduceddr2cat, margins) if plotGrid: print ("Plotting grid") ppgplot.pgsci(6) xVals = [p[0] for p in pixelGrid] yVals = [p[1] for p in pixelGrid] ppgplot.pgpt(xVals, yVals, 2) if plotPointings: ppgplot.pgsfs(2) ppgplot.pgslw(10) for p in pointings: if p["type"] == "Maximum": ppgplot.pgsci(2) if p["type"] == "Minimum": ppgplot.pgsci(4) ppgplot.pgcirc(p["x"], p["y"], 30) ppgplot.pgslw(1) if plotBrightStars: ppgplot.pgsci(3) ppgplot.pgsfs(2) ppgplot.pgslw(10) for b in brightStars: ppgplot.pgcirc(b["x"], b["y"], 40)
def plotCircles(objectTable, margins): margins = checkMargins(margins) ppgplot.pgsci(3) ppgplot.pgsfs(2) index = 0 print("Margins:", margins) for obj in objectTable: ra = obj['ra'] dec = obj['dec'] c = obj['class'] if ra > margins[1][0] and ra < margins[0][0] and dec < margins[0][ 1] and dec > margins[1][1]: # print index, ra, dec, x, y, c index += 1 colour = 1 if c == -9: colour = 2 # Red = Saturated if c == 1: colour = 4 # Blue = Galaxy if c == -3: colour = 5 # Cyan = Probable Galaxy if c == -1: colour = 3 # Green = Star if c == -2: colour = 8 # Orange = Probable Star if c == 0: colour = 2 # Red = Noise ppgplot.pgsci(colour) ppgplot.pgcirc(obj['x'], obj['y'], 5 + (5 * obj['pStar'])) return (index + 1)
xll = w.xll/w.xbin - xmin xsize = w.nx yll = w.yll/w.ybin - ymin ysize = w.ny fullFrame[yll:yll+ysize, xll:xll+xsize] = fullFrame[yll:yll+ysize, xll:xll+xsize] + boostedImage rows, cols = numpy.shape(fullFrame) # Draw the grayscale bitmap ppgplot.pggray(fullFrame, 0, cols-1 , 0, rows-1 , 0, 255, pgPlotTransform) # Draw the full reference aperture list ppgplot.pgsci(3) for s in sourceList.getSources(): (x, y) = s.abs_position ppgplot.pgcirc(x, y, 10) # ppgplot.pgslct(bitmapView) ppgplot.pgsci(2) for index, s in enumerate(referenceApertures.getSources()): window = allWindows[s.windowIndex] center = s.latestPosition if s.recentFail: print "Recent fail... will try a position at least 5 frames back" positions = s.positionLog if len(positions)>5: center = positions[-5]['position'] print "Using position:", center xcenterInt = int(center[0])
sra, sdec, m.az, m.alt, m.q, 3.0 * m.w, 2.0 * m.w) text = text + "L: %d; O: %s; m < %.1f; C: %s; l: %.0f s" % ( m.level, m.orientation, m.maxmag, m.camera, m.length) ppgplot.pgmtxt("B", 1.0, 0.0, 0.0, text) ppgplot.pgsch(1.0) # Plot stars c = s.mag < m.maxmag aa = s.p[c].transform_to(AltAz(location=m.loc, obstime=m.t)) mag = s.mag[c] rad = (m.maxrad + (m.minrad - m.maxrad) * (mag - m.minmag) / (m.maxmag - m.minmag)) * m.w / 90.0 rx, ry = forward(m.az, m.alt, aa.az.deg, aa.alt.deg) for i in range(len(rad)): ppgplot.pgsci(0) ppgplot.pgcirc(rx[i], ry[i], 1.3 * rad[i]) ppgplot.pgsci(1) ppgplot.pgcirc(rx[i], ry[i], rad[i]) # Plot grid m.plot_horizontal_grid() # Reset redraw redraw = False # Get cursor x, y, char = ppgplot.pgcurs() print(x, y, char) # Quit
% (position[1], position[0], superMax, superMin, variance, variance / numPixels)) ppgplot.pgslct(spPreview['pgplotHandle']) boostedPreview = generalUtils.percentiles(superPixel, 20, 99) ppgplot.pggray(boostedPreview, 0, superPixelSize - 1, 0, superPixelSize - 1, 0, 255, imagePlot['pgPlotTransform']) ppgplot.pgsci(0) ppgplot.pgsch(5) ppgplot.pgtext(1, 2, "max: %d" % superMax) ppgplot.pgslct(imagePlot['pgplotHandle']) pointingObject = {'x': position[1], 'y': position[0]} pointings.append(pointingObject) ppgplot.pgsfs(2) ppgplot.pgsci(5) ppgplot.pgcirc(position[1], position[0], radius) xpts = [ startX, startX, startX + superPixelSize, startX + superPixelSize ] ypts = [ startY, startY + superPixelSize, startY + superPixelSize, startY ] ppgplot.pgsfs(2) ppgplot.pgsci(4) ppgplot.pgpoly(xpts, ypts) tempBitmap = numpy.zeros(numpy.shape(imageCopy)) tempBitmap = gridCircle(position[0], position[1], radius, tempBitmap) additionalMask = numpy.ma.make_mask(tempBitmap)
image = matplotlib.pyplot.imshow(boostedFullFrame, cmap='gray_r') for s in allSources: x, y = s[0], s[1] matplotlib.pyplot.gca().add_artist(matplotlib.pyplot.Circle((x,y), 10, color='green', fill=False, linewidth=1.0)) if applyShift: for s in topSources: x, y = s[0], s[1] matplotlib.pyplot.gca().add_artist(matplotlib.pyplot.Circle((x,y), 10, color='blue', fill=False, linewidth=1.0)) rows, cols = numpy.shape(boostedFullFrame) ppgplot.pggray(boostedFullFrame, 0, cols-1, 0, rows-1, 0, 255, pgPlotTransform) ppgplot.pgsfs(2) # Set fill style to 'outline' ppgplot.pgsci(3) # Set the colour to 'green' for s in allSources: x, y = s[0], s[1] ppgplot.pgcirc(x,y, 10) """ End of the prework """ rdat.set(1) # Reset back to the first frame frameRange = maximumFrames - startFrame + 1 if arg.numframes!=None: requestedNumFrames = arg.numframes if requestedNumFrames<(frameRange): frameRange = requestedNumFrames startTime = datetime.datetime.now() timeLeftString = "??:??"
% (position[1], position[0], superMax, superMin, variance, variance / numPixels) ) ppgplot.pgslct(spPreview["pgplotHandle"]) boostedPreview = generalUtils.percentiles(superPixel, 20, 99) ppgplot.pggray( boostedPreview, 0, superPixelSize - 1, 0, superPixelSize - 1, 0, 255, imagePlot["pgPlotTransform"] ) ppgplot.pgsci(0) ppgplot.pgsch(5) ppgplot.pgtext(1, 2, "max: %d" % superMax) ppgplot.pgslct(imagePlot["pgplotHandle"]) pointingObject = {"x": position[1], "y": position[0]} pointings.append(pointingObject) ppgplot.pgsfs(2) ppgplot.pgsci(5) ppgplot.pgcirc(position[1], position[0], radius) xpts = [startX, startX, startX + superPixelSize, startX + superPixelSize] ypts = [startY, startY + superPixelSize, startY + superPixelSize, startY] ppgplot.pgsfs(2) ppgplot.pgsci(4) ppgplot.pgpoly(xpts, ypts) tempBitmap = numpy.zeros(numpy.shape(imageCopy)) tempBitmap = gridCircle(position[0], position[1], radius, tempBitmap) additionalMask = numpy.ma.make_mask(tempBitmap) booleanMask = numpy.ma.mask_or(booleanMask, additionalMask) maskedImageCopy = numpy.ma.masked_array(imageCopy, booleanMask) print "Number of masked elements", numpy.ma.count_masked(maskedImageCopy) print "Number of non-masked elements", numpy.ma.count(maskedImageCopy) # imageCopy = numpy.ma.filled(maskedImageCopy, 0) # time.sleep(1)
def gotoit(): nbin = 10 #c=Cluster() #g=Galaxy() clusterfile = "clusters.spec.dat" print "reading in cluster file to get cluster parameters" c.creadfiles(clusterfile) print "got ", len(c.z), " clusters" c.convarray() c.Kcorr() go2 = [] #combined arrays containing all galaxies gsf = [] #combined arrays containing all galaxies gsig5 = [] gsig10 = [] gsig52r200 = [] #spec catalogs extended out to 2xR200 gsig102r200 = [] #spec catalogs extended out to 2xR200 gsig5phot = [] gsig10phot = [] sgo2 = [] #combined arrays containing all galaxies sgha = [] #combined arrays containing all galaxies sgsf = [] #combined arrays containing all galaxies sgsig5 = [] sgsig10 = [] sgsig52r200 = [] #spec catalogs extended out to 2xR200 sgsig102r200 = [] #spec catalogs extended out to 2xR200 sgsig5phot = [] sgsig10phot = [] if (mode < 1): c.getsdssphotcats() c.getsdssspeccats() gr = [] #list of median g-r colors psplotinit('summary.ps') x1 = .1 x2 = .45 x3 = .6 x4 = .95 y1 = .15 y2 = .45 y3 = .55 y4 = .85 ppgplot.pgsch(1.2) #font size ppgplot.pgslw(2) #for i in range(len(c.z)): cl = [10] (xl, xu, yl, yu) = ppgplot.pgqvp(0) print "viewport = ", xl, xu, yl, yu complall = [] for i in range(len(c.z)): #for i in cl: gname = "g" + str(i) gname = Galaxy() gspecfile = "abell" + str(c.id[i]) + ".spec.dat" gname.greadfiles(gspecfile, i) print "number of members = ", len(gname.z) if len(gname.z) < 10: print "less than 10 members", len(gname.z) continue gname.convarray() #gname.cullmembers() #gname.getmemb()#get members w/in R200 #gr.append(N.average(gname.g-gname.r)) gspec2r200file = "abell" + str(c.id[i]) + ".spec2r200.dat" gname.greadspecfiles(gspec2r200file, c.dL[i], c.kcorr[i], i) print i, c.id[i], " getnearest, first call", len(gname.ra), len( gname.sra), sum(gname.smemb) #gname.getnearest(i) (gname.sig52r200, gname.sig102r200) = gname.getnearestgen( gname.ra, gname.dec, gname.sra, gname.sdec, i ) #measure distances from ra1, dec1 to members in catalog ra2, dec2 sig52r200 = N.compress(gname.memb > 0, gname.sig52r200) gsig52r200[len(gsig5phot):] = sig52r200 sig102r200 = N.compress(gname.memb > 0, gname.sig102r200) gsig102r200[len(gsig10phot):] = sig102r200 gphotfile = "abell" + str(c.id[i]) + ".phot.dat" gname.greadphotfiles(gphotfile, c.dL[i], c.kcorr[i]) gname.getnearest(i) #print "len of local density arrays = ",len(gname.sig5),len(gname.sig5phot) #print gspecfile, c.z[i],c.kcorr[i] (ds5, ds10) = gname.gwritefiles(gspecfile, i) o2 = N.compress(gname.memb > 0, gname.o2) go2[len(go2):] = o2 sf = N.compress(gname.memb > 0, gname.sf) gsf[len(gsf):] = sf sig5 = N.compress(gname.memb > 0, gname.sig5) gsig5[len(gsig5):] = sig5 sig10 = N.compress(gname.memb > 0, gname.sig10) gsig10[len(gsig10):] = sig10 sig5phot = N.compress(gname.memb > 0, gname.sig5phot) gsig5phot[len(gsig5phot):] = sig5phot sig10phot = N.compress(gname.memb > 0, gname.sig10phot) gsig10phot[len(gsig10phot):] = sig10phot ds5 = N.array(ds5, 'f') ds10 = N.array(ds10, 'f') #print len(ds5),len(ds10) #ppgplot.pgsvp(xl,xu,yl,yu) ppgplot.pgsvp(0.1, .9, .08, .92) ppgplot.pgslw(7) label = 'Abell ' + str( c.id[i]) + ' (z=%5.2f, \gs=%3.0f km/s)' % (c.z[i], c.sigma[i]) ppgplot.pgtext(0., 1., label) ppgplot.pgslw(2) ppgplot.pgsvp(x1, x2, y1, y2) #sets viewport #ppgplot.pgbox("",0.0,0,"",0.0) ppgplot.pgswin(-1., 3., -1., 3.) #axes limits ppgplot.pgbox('bcnst', 1, 2, 'bcvnst', 1, 2) #tickmarks and labeling ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "\gS\d10\u(phot) (gal/Mpc\u2\d)") #xlabel ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, "\gS\d10\u(spec) (gal/Mpc\u2\d)") x = N.arange(-5., 10., .1) y = x ppgplot.pgsls(1) #dotted ppgplot.pgslw(4) #line width ppgplot.pgline(x, y) x = N.log10(sig10phot) y = N.log10(sig10) ppgplot.pgsch(.7) ppgplot.pgpt(x, y, 17) xp = N.array([-0.5], 'f') yp = N.array([2.5], 'f') ppgplot.pgpt(xp, yp, 17) ppgplot.pgtext((xp + .1), yp, 'spec(1.2xR200) vs phot') ppgplot.pgsci(4) xp = N.array([-0.5], 'f') yp = N.array([2.2], 'f') ppgplot.pgpt(xp, yp, 21) ppgplot.pgtext((xp + .1), yp, 'spec(2xR200) vs phot') y = N.log10(sig102r200) ppgplot.pgsch(.9) ppgplot.pgpt(x, y, 21) ppgplot.pgsch(1.2) ppgplot.pgslw(2) #line width ppgplot.pgsci(1) #ppgplot.pgenv(-200.,200.,-1.,20.,0,0) #ppgplot.pgsci(2) #ppgplot.pghist(len(ds5),ds5,-200.,200.,30,1) #ppgplot.pgsci(4) #ppgplot.pghist(len(ds10),ds10,-200.,200.,30,1) #ppgplot.pgsci(1) #ppgplot.pglab("\gD\gS","Ngal",gspecfile) #ppgplot.pgpanl(1,2) g = N.compress(gname.memb > 0, gname.g) r = N.compress(gname.memb > 0, gname.r) V = N.compress(gname.memb > 0, gname.V) dmag = N.compress(gname.memb > 0, gname.dmagnearest) dnearest = N.compress(gname.memb > 0, gname.nearest) dz = N.compress(gname.memb > 0, gname.dz) #ppgplot.pgsvp(x3,x4,y1,y2) #sets viewport #ppgplot.pgenv(-.5,3.,-1.,5.,0,0) #ppgplot.pgpt((g-V),(g-r),17) #ppgplot.pgsci(1) #ppgplot.pglab("g - M\dV\u",'g-r',gspecfile) ppgplot.pgsvp(x1, x2, y3, y4) #sets viewport #ppgplot.pgbox("",0.0,0,"",0.0) ppgplot.pgswin( (c.ra[i] + 2. * c.r200deg[i] / N.cos(c.dec[i] * N.pi / 180.)), (c.ra[i] - 2 * c.r200deg[i] / N.cos(c.dec[i] * N.pi / 180.)), (c.dec[i] - 2. * c.r200deg[i]), (c.dec[i] + 2. * c.r200deg[i])) ppgplot.pgbox('bcnst', 0.0, 0.0, 'bcvnst', 0.0, 0.0) #tickmarks and labeling ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "RA") #xlabel ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, "Dec") #ppgplot.pglab("RA",'Dec',gspecfile) ppgplot.pgsfs(2) ppgplot.pgcirc(c.ra[i], c.dec[i], c.r200deg[i]) ppgplot.pgsls(4) ppgplot.pgcirc(c.ra[i], c.dec[i], 1.2 * c.r200deg[i]) ppgplot.pgsls(1) #ppgplot.pgcirc(c.ra[i],c.dec[i],c.r200deg[i]/N.cos(c.dec[i]*N.pi/180.)) ppgplot.pgsci(2) ppgplot.pgpt(gname.ra, gname.dec, 17) ppgplot.pgsci(4) ppgplot.pgpt(gname.photra, gname.photdec, 21) ppgplot.pgsci(1) #calculate completeness w/in R200 dspec = N.sqrt((gname.ra - c.ra[i])**2 + (gname.dec - c.dec[i])**2) dphot = N.sqrt((gname.photra - c.ra[i])**2 + (gname.photdec - c.dec[i])**2) nphot = 1. * len(N.compress(dphot < c.r200deg[i], dphot)) nspec = 1. * len(N.compress(dspec < c.r200deg[i], dspec)) s = "Completeness for cluster Abell %s = %6.2f (nspec=%6.1f,nphot= %6.1f)" % ( str(c.id[i]), float(nspec / nphot), nspec, nphot) print s complall.append(float(nspec / nphot)) ppgplot.pgsvp(x3, x4, y3, y4) #sets viewport #ppgplot.pgsvp(x1,x2,y3,y4) #sets viewport #ppgplot.pgbox("",0.0,0,"",0.0) ppgplot.pgswin(-0.005, .05, -1., 1.) ppgplot.pgbox('bcnst', .02, 2, 'bcvnst', 1, 4) #tickmarks and labeling ppgplot.pgsch(1.0) ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "Dist to nearest phot neighbor (deg)") #xlabel ppgplot.pgsch(1.2) ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, 'M\dV\u(phot) - M\dV\u(spec)') ppgplot.pgsci(2) ppgplot.pgpt(dnearest, dmag, 17) ppgplot.pgsci(1) x = N.arange(-30., 30., 1.) y = 0 * x ppgplot.pgsci(1) ppgplot.pgsls(2) ppgplot.pgline(x, y) ppgplot.pgsls(1) ppgplot.pgsci(1) dm = N.compress(dnearest < 0.01, dmag) std = '%5.3f (%5.3f)' % (pylab.mean(dm), pylab.std(dm)) #ppgplot.pgslw(7) #label='Abell '+str(c.id[i]) #ppgplot.pgtext(0.,1.,label) ppgplot.pgslw(2) label = '\gDM\dV\u(err) = ' + std ppgplot.pgsch(.9) ppgplot.pgtext(0., .8, label) #label = "z = %5.2f"%(c.z[i]) #ppgplot.pgtext(0.,.8,label) ppgplot.pgsch(1.2) #ppgplot.pgsvp(x3,x4,y3,y4) #sets viewport #ppgplot.pgenv(-.15,.15,-3.,3.,0,0) #ppgplot.pgsci(2) #ppgplot.pgpt(dz,dmag,17) #ppgplot.pgsci(1) #ppgplot.pglab("z-z\dcl\u",'\gD Mag',gspecfile) ppgplot.pgsvp(x3, x4, y1, y2) #sets viewport ppgplot.pgswin(-3., 3., -1., 1.) ppgplot.pgbox('bcnst', 1, 2, 'bcvnst', 1, 4) #tickmarks and labeling ppgplot.pgmtxt('b', 2.5, 0.5, 0.5, "\gDv/\gs") #xlabel ppgplot.pgmtxt('l', 2.6, 0.5, 0.5, 'M\dV\u(phot) - M\dV\u(spec)') ppgplot.pgsci(2) dv = dz / (1 + c.z[i]) * 3.e5 / c.sigma[i] ppgplot.pgpt(dv, dmag, 17) ppgplot.pgsci(1) x = N.arange(-30., 30., 1.) y = 0 * x ppgplot.pgsci(1) ppgplot.pgsls(2) ppgplot.pgline(x, y) ppgplot.pgsls(1) ppgplot.pgsci(1) #ppgplot.pgsvp(x1,x2,y1,y2) #sets viewport #ppgplot.pgenv(0.,3.5,-3.,3.,0,0) #ppgplot.pgsci(4) #ppgplot.pgpt((g-r),dmag,17) #ppgplot.pgsci(1) #ppgplot.pglab("g-r",'\gD Mag',gspecfile) #ppgplot.pgsvp(x1,x2,y1,y2) #sets viewport #ppgplot.pgenv(-25.,-18.,-1.,1.,0,0) #ppgplot.pgsci(4) #ppgplot.pgpt((V),dmag,17) #x=N.arange(-30.,30.,1.) #y=0*x #ppgplot.pgsci(1) #ppgplot.pgsls(2) #ppgplot.pgline(x,y) #ppgplot.pgsls(1) #ppgplot.pgsci(1) #ppgplot.pglab("M\dV\u(spec)",'M\dV\u(phot) - M\dV\u(spec)',gspecfile) #ppgplot.pgpage() #ppgplot.pgpage() #combine galaxy data ppgplot.pgpage() (sssig5, sssig10) = gname.getnearestgen(gname.sra, gname.sdec, gname.sra, gname.sdec, i) #get spec-spec local density (spsig5, spsig10) = gname.getnearestgen(gname.sra, gname.sdec, gname.photra, gname.photdec, i) #get spec-phot local density o2 = N.compress(gname.smemb > 0, gname.so2) sgo2[len(sgo2):] = o2 ha = N.compress(gname.smemb > 0, gname.sha) sgha[len(sgha):] = ha sf = N.compress(gname.smemb > 0, gname.ssf) sgsf[len(sgsf):] = sf sig5 = N.compress(gname.smemb > 0, sssig5) sgsig5[len(sgsig5):] = sig5 sig10 = N.compress(gname.smemb > 0, sssig10) sgsig10[len(sgsig10):] = sig10 sig5phot = N.compress(gname.smemb > 0, spsig5) sgsig5phot[len(sgsig5phot):] = sig5phot sig10phot = N.compress(gname.smemb > 0, spsig10) sgsig10phot[len(sgsig10phot):] = sig10phot #gr=N.array(gr,'f') #c.assigncolor(gr) #for i in range(len(c.z)): # print c.id[i],c.z[i],c.r200[i],c.r200deg[i] print "Average Completeness w/in R200 = ", N.average(N.array( complall, 'f')) print "sig o2", len(gsig10), len(gsig10phot), len(go2) print "sig o2 large", len(sgsig10), len(sgsig10phot), len(sgo2) plotsigo2all(gsig10, gsig10phot, go2, 'o2vsig10spec', nbin) #plotsigo2(gsig5phot,-1*go2,'o2vsig5phot',nbin) plotsigsff(gsig5, gsf, 'sffvsig5spec', nbin) #sf frac versus sigma plotsigsff(gsig5phot, gsf, 'sffvsig5phot', nbin) #sf frac versus sigma plotsigsffall(gsig5, gsig5phot, gsf, 'sffvsig5all', nbin) #sf frac versus sigma plotsig10sffall(gsig10, gsig10phot, gsf, 'sffvsig10all', nbin) #sf frac versus sigma #plotsighaall(gsig10,gsig10phot,gha,'havsig10spec',20) #plotsigo2all(sgsig10,sgsig10phot,sgo2,'o2vsig10spec.large',30) plotsighaall(sgsig10, sgsig10phot, sgha, 'havsig10spec.large', 10) #plotsigsffall(sgsig5,sgsig5phot,sgsf,'sffvsig5.large',nbin)#sf frac versus sigma #plotsig10sffall(sgsig10,sgsig10phot,sgsf,'sffvsig10.large',nbin)#sf frac versus sigma psplotinit('one2one.ps') ppgplot.pgenv(-1.5, 2.5, -1.5, 2.5, 0) ppgplot.pglab("\gS\d10\u(phot) (gal/Mpc\u2\d)", "\gS\d10\u(spec) (gal/Mpc\u2\d)", "") x = N.arange(-5., 10., .1) y = x ppgplot.pgsls(1) #dotted ppgplot.pgslw(4) #line width ppgplot.pgline(x, y) x = N.log10(gsig10phot) y = N.log10(gsig10) ppgplot.pgsch(.7) ppgplot.pgpt(x, y, 17) ppgplot.pgsch(1.) ppgplot.pgsci(1) ppgplot.pgend()