def validate_probtype(probtype, pdparam): N = 100000 # Check to see if mean negative log likelihood == differential entropy Mval = np.repeat(pdparam[None, :], N, axis=0) M = probtype.param_placeholder([N]) X = probtype.sample_placeholder([N]) pd = probtype.pdfromflat(M) calcloglik = U.function([X, M], pd.logp(X)) calcent = U.function([M], pd.entropy()) Xval = tf.get_default_session().run(pd.sample(), feed_dict={M:Mval}) logliks = calcloglik(Xval, Mval) entval_ll = - logliks.mean() #pylint: disable=E1101 entval_ll_stderr = logliks.std() / np.sqrt(N) #pylint: disable=E1101 entval = calcent(Mval).mean() #pylint: disable=E1101 assert np.abs(entval - entval_ll) < 3 * entval_ll_stderr # within 3 sigmas # Check to see if kldiv[p,q] = - ent[p] - E_p[log q] M2 = probtype.param_placeholder([N]) pd2 = probtype.pdfromflat(M2) q = pdparam + np.random.randn(pdparam.size) * 0.1 Mval2 = np.repeat(q[None, :], N, axis=0) calckl = U.function([M, M2], pd.kl(pd2)) klval = calckl(Mval, Mval2).mean() #pylint: disable=E1101 logliks = calcloglik(Xval, Mval2) klval_ll = - entval - logliks.mean() #pylint: disable=E1101 klval_ll_stderr = logliks.std() / np.sqrt(N) #pylint: disable=E1101 assert np.abs(klval - klval_ll) < 3 * klval_ll_stderr # within 3 sigmas print('ok on', probtype, pdparam)
def test_MpiAdam(): np.random.seed(0) tf.set_random_seed(0) a = tf.Variable(np.random.randn(3).astype('float32')) b = tf.Variable(np.random.randn(2, 5).astype('float32')) loss = tf.reduce_sum(tf.square(a)) + tf.reduce_sum(tf.sin(b)) stepsize = 1e-2 update_op = tf.train.AdamOptimizer(stepsize).minimize(loss) do_update = U.function([], loss, updates=[update_op]) tf.get_default_session().run(tf.global_variables_initializer()) for i in range(10): print(i, do_update()) tf.set_random_seed(0) tf.get_default_session().run(tf.global_variables_initializer()) var_list = [a, b] lossandgrad = U.function([], [loss, U.flatgrad(loss, var_list)], updates=[update_op]) adam = MpiAdam(var_list) for i in range(10): l, g = lossandgrad() adam.update(g, stepsize) print(i, l)
def test_function(): with tf.Graph().as_default(): x = tf.placeholder(tf.int32, (), name="x") y = tf.placeholder(tf.int32, (), name="y") z = 3 * x + 2 * y lin = function([x, y], z, givens={y: 0}) with single_threaded_session(): initialize() assert lin(2) == 6 assert lin(2, 2) == 10
def test_multikwargs(): with tf.Graph().as_default(): x = tf.placeholder(tf.int32, (), name="x") with tf.variable_scope("other"): x2 = tf.placeholder(tf.int32, (), name="x") z = 3 * x + 2 * x2 lin = function([x, x2], z, givens={x2: 0}) with single_threaded_session(): initialize() assert lin(2) == 6 assert lin(2, 2) == 10
def __init__(self, epsilon=1e-2, shape=(), comm=None): self.comm = MPI.COMM_WORLD if comm is None else comm self._sum = tf.get_variable(dtype=tf.float64, shape=shape, initializer=tf.constant_initializer(0.0), name="runningsum", trainable=False) self._sumsq = tf.get_variable( dtype=tf.float64, shape=shape, initializer=tf.constant_initializer(epsilon), name="runningsumsq", trainable=False) self._count = tf.get_variable( dtype=tf.float64, shape=(), initializer=tf.constant_initializer(epsilon), name="count", trainable=False) self.shape = shape self.mean = tf.to_float(self._sum / self._count) self.std = tf.sqrt( tf.maximum( tf.to_float(self._sumsq / self._count) - tf.square(self.mean), 1e-2)) newsum = tf.placeholder(shape=self.shape, dtype=tf.float64, name='sum') newsumsq = tf.placeholder(shape=self.shape, dtype=tf.float64, name='var') newcount = tf.placeholder(shape=[], dtype=tf.float64, name='count') self.incfiltparams = U.function( [newsum, newsumsq, newcount], [], updates=[ tf.assign_add(self._sum, newsum), tf.assign_add(self._sumsq, newsumsq), tf.assign_add(self._count, newcount) ])
def _init(self, ob_space, ac_space, hid_size, num_hid_layers, gaussian_fixed_var=True): assert isinstance(ob_space, gym.spaces.Box) self.pdtype = pdtype = make_pdtype(ac_space) sequence_length = None ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape)) with tf.variable_scope("obfilter"): self.ob_rms = RunningMeanStd(shape=ob_space.shape) with tf.variable_scope('vf'): obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0) last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name="fc%i"%(i+1), kernel_initializer=U.normc_initializer(1.0))) self.vpred = tf.layers.dense(last_out, 1, name='final', kernel_initializer=U.normc_initializer(1.0))[:,0] with tf.variable_scope('pol'): last_out = obz for i in range(num_hid_layers): last_out = tf.nn.tanh(tf.layers.dense(last_out, hid_size, name='fc%i'%(i+1), kernel_initializer=U.normc_initializer(1.0))) if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box): mean = tf.layers.dense(last_out, pdtype.param_shape()[0]//2, name='final', kernel_initializer=U.normc_initializer(0.01)) logstd = tf.get_variable(name="logstd", shape=[1, pdtype.param_shape()[0]//2], initializer=tf.zeros_initializer()) pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1) else: pdparam = tf.layers.dense(last_out, pdtype.param_shape()[0], name='final', kernel_initializer=U.normc_initializer(0.01)) self.pd = pdtype.pdfromflat(pdparam) self.state_in = [] self.state_out = [] stochastic = tf.placeholder(dtype=tf.bool, shape=()) ac = U.switch(stochastic, self.pd.sample(), self.pd.mode()) self._act = U.function([stochastic, ob], [ac, self.vpred])
def _init(self, ob_space, ac_space, num_units, gaussian_fixed_var=True): assert isinstance(ob_space, gym.spaces.Box) num_hid_layers = 1 hid_size = 10 self.pdtype = pdtype = make_pdtype(ac_space) sequence_length = None ob = U.get_placeholder(name="ob", dtype=tf.float32, shape=[sequence_length] + list(ob_space.shape)) full_path_is_done = tf.get_variable("full_path_is_done", dtype=tf.bool, initializer=True, trainable=False) with tf.variable_scope("obfilter"): self.ob_rms = RunningMeanStd(shape=ob_space.shape, comm=self.comm) with tf.variable_scope('vf'): obz = tf.clip_by_value((ob - self.ob_rms.mean) / self.ob_rms.std, -5.0, 5.0) last_out = obz lstm = tf.contrib.rnn.LSTMCell( num_units=num_units, name=f'rnn_cell', initializer=U.normc_initializer(1.0)) init_lstm_state = lstm.zero_state(1, dtype=tf.float32) v_lstm_state = tf.get_variable("v_lstm_state", dtype=tf.float32, initializer=init_lstm_state, trainable=False) ba_state = tf.get_variable("ba_state", dtype=tf.float32, initializer=init_lstm_state, trainable=False) assign_ba_state = tf.cond( full_path_is_done, lambda: tf.assign(ba_state, v_lstm_state), # TRUE lambda: tf.assign(ba_state, ba_state)) # FALSE lstm_state = tf.cond(tf.equal(tf.shape(ob)[0], 1), lambda: v_lstm_state, lambda: ba_state) assign_fpid = tf.assign(full_path_is_done, tf.math.greater(tf.shape(ob)[0], 1)) with tf.control_dependencies([assign_ba_state]): last_out = tf.expand_dims(last_out, 0) last_out, lstm_new_state = tf.nn.dynamic_rnn( lstm, last_out, initial_state=init_lstm_state, dtype=tf.float32) assign_new_state = tf.assign(v_lstm_state, lstm_new_state) last_out = tf.squeeze(last_out, axis=[0]) with tf.control_dependencies([assign_new_state, assign_fpid]): self.vpred = tf.layers.dense( last_out, 1, name='final', kernel_initializer=U.normc_initializer(1.0))[:, 0] with tf.variable_scope('pol'): last_out = obz lstm = tf.contrib.rnn.LSTMCell( num_units=num_units, name=f'rnn_cell', initializer=U.normc_initializer(1.0), state_is_tuple=False) init_lstm_state = lstm.zero_state(1, dtype=tf.float32) v_lstm_state = tf.get_variable("v_lstm_state", dtype=tf.float32, initializer=init_lstm_state, trainable=False) ba_state = tf.get_variable("ba_state", dtype=tf.float32, initializer=init_lstm_state, trainable=False) assign_ba_state = tf.cond( full_path_is_done, lambda: tf.assign(ba_state, v_lstm_state), # TRUE lambda: tf.assign(ba_state, ba_state)) # FALSE lstm_state = tf.cond(tf.equal(tf.shape(ob)[0], 1), lambda: v_lstm_state, lambda: ba_state) assign_fpid = tf.assign(full_path_is_done, tf.math.greater(tf.shape(ob)[0], 1)) with tf.control_dependencies([assign_ba_state]): last_out = tf.expand_dims(last_out, 0) last_out, lstm_new_state = tf.nn.dynamic_rnn( lstm, last_out, initial_state=lstm_state, dtype=tf.float32) assign_new_state = tf.assign(v_lstm_state, lstm_new_state) last_out = tf.squeeze(last_out, axis=[0]) with tf.control_dependencies([assign_new_state, assign_fpid]): if gaussian_fixed_var and isinstance(ac_space, gym.spaces.Box): mean = tf.layers.dense( last_out, pdtype.param_shape()[0] // 2, name='final', kernel_initializer=U.normc_initializer(0.01)) logstd = tf.get_variable( name="logstd", shape=[1, pdtype.param_shape()[0] // 2], initializer=tf.zeros_initializer()) pdparam = tf.concat([mean, mean * 0.0 + logstd], axis=1) else: pdparam = tf.layers.dense( last_out, pdtype.param_shape()[0], name='final', kernel_initializer=U.normc_initializer(0.01)) self.pd = pdtype.pdfromflat(pdparam) self.state_in = [] self.state_out = [] stochastic = tf.placeholder(dtype=tf.bool, shape=()) ac = U.switch(stochastic, self.pd.sample(), self.pd.mode()) self._act = U.function([stochastic, ob], [ac, self.vpred])
def learn( env, policy_fn, *, timesteps_per_actorbatch, # timesteps per actor per update clip_param, entcoeff, # clipping parameter epsilon, entropy coeff optim_epochs, optim_stepsize, optim_batchsize, # optimization hypers gamma, lam, # advantage estimation comm, tags, rank_workers, max_timesteps=0, max_episodes=0, max_iters=0, max_seconds=0, # time constraint callback=None, # you can do anything in the callback, since it takes locals(), globals() adam_epsilon=1e-5, schedule='constant', # annealing for stepsize parameters (epsilon and adam) ): # Setup losses and stuff # ---------------------------------------- ob_space = env.observation_space ac_space = env.action_space pi = policy_fn("pi", ob_space, ac_space, comm=comm) # Construct network for new policy oldpi = policy_fn("oldpi", ob_space, ac_space, comm=comm) # Network for old policy atarg = tf.placeholder( dtype=tf.float32, shape=[None]) # Target advantage function (if applicable) ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return lrmult = tf.placeholder( name='lrmult', dtype=tf.float32, shape=[]) # learning rate multiplier, updated with schedule clip_param = clip_param * lrmult # Annealed cliping parameter epislon ob = U.get_placeholder_cached(name="ob") ac = pi.pdtype.sample_placeholder([None]) kloldnew = oldpi.pd.kl(pi.pd) ent = pi.pd.entropy() meankl = tf.reduce_mean(kloldnew) meanent = tf.reduce_mean(ent) pol_entpen = (-entcoeff) * meanent ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # pnew / pold surr1 = ratio * atarg # surrogate from conservative policy iteration surr2 = tf.clip_by_value(ratio, 1.0 - clip_param, 1.0 + clip_param) * atarg # pol_surr = -tf.reduce_mean(tf.minimum( surr1, surr2)) # PPO's pessimistic surrogate (L^CLIP) vf_loss = tf.reduce_mean(tf.square(pi.vpred - ret)) total_loss = pol_surr + pol_entpen + vf_loss losses = [pol_surr, pol_entpen, vf_loss, meankl, meanent] loss_names = ["pol_surr", "pol_entpen", "vf_loss", "kl", "ent"] var_list = pi.get_trainable_variables() lossandgrad = U.function([ob, ac, atarg, ret, lrmult], losses + [U.flatgrad(total_loss, var_list)]) adam = MpiAdam(var_list, epsilon=adam_epsilon, comm=comm) assign_old_eq_new = U.function( [], [], updates=[ tf.assign(oldv, newv) for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables()) ]) compute_losses = U.function([ob, ac, atarg, ret, lrmult], losses) U.initialize() adam.sync() # Prepare for rollouts # ---------------------------------------- seg_gen = traj_segment_generator(pi, env, timesteps_per_actorbatch, stochastic=True) episodes_so_far = 0 timesteps_so_far = 0 iters_so_far = 0 tstart = time.time() lenbuffer = deque(maxlen=100) # rolling buffer for episode lengths rewbuffer = deque(maxlen=100) # rolling buffer for episode rewards cond = sum( [max_iters > 0, max_timesteps > 0, max_episodes > 0, max_seconds > 0]) assert cond == 1, f"Only one time constraint permitted: cond={cond}, max_iters={max_iters}, max_timesteps={max_timesteps}, max_episodes={max_episodes}, max_seconds={max_seconds}" while True: if callback: callback(locals(), globals()) if max_timesteps and timesteps_so_far >= max_timesteps: break elif max_episodes and episodes_so_far >= max_episodes: break elif max_iters and iters_so_far >= max_iters: break elif max_seconds and time.time() - tstart >= max_seconds: comm = MPI.COMM_WORLD for dest in rank_workers: print(f'~~~> dest: {dest}, rank: {comm.rank}') comm.send(None, dest=dest, tag=tags.EXIT) break if schedule == 'constant': cur_lrmult = 1.0 elif schedule == 'linear': cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0) else: raise NotImplementedError logger.log("********** Iteration %i ************" % iters_so_far) seg = seg_gen.__next__() add_vtarg_and_adv(seg, gamma, lam) # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets)) ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[ "tdlamret"] vpredbefore = seg["vpred"] # predicted value function before udpate atarg = (atarg - atarg.mean() ) / atarg.std() # standardized advantage function estimate d = Dataset(dict(ob=ob, ac=ac, atarg=atarg, vtarg=tdlamret), shuffle=not pi.recurrent) # optim_batchsize = optim_batchsize or ob.shape[0] optim_batchsize = ob.shape[0] if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy assign_old_eq_new() # set old parameter values to new parameter values logger.log("Optimizing...") logger.log(fmt_row(13, loss_names)) # Here we do a bunch of optimization epochs over the data for _ in range(optim_epochs): losses = [ ] # list of tuples, each of which gives the loss for a minibatch for batch in d.iterate_once(optim_batchsize): *newlosses, g = lossandgrad(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult) adam.update(g, optim_stepsize * cur_lrmult) losses.append(newlosses) logger.log(fmt_row(13, np.mean(losses, axis=0))) logger.log("Evaluating losses...") losses = [] for batch in d.iterate_once(optim_batchsize): newlosses = compute_losses(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult) losses.append(newlosses) meanlosses, _, _ = mpi_moments(losses, axis=0, comm=comm) logger.log(fmt_row(13, meanlosses)) for (lossval, name) in zipsame(meanlosses, loss_names): logger.record_tabular("loss_" + name, lossval) logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret)) lrlocal = (seg["ep_lens"], seg["ep_rets"]) # local values listoflrpairs = comm.allgather(lrlocal) # list of tuples lens, rews = map(flatten_lists, zip(*listoflrpairs)) lenbuffer.extend(lens) rewbuffer.extend(rews) logger.record_tabular("EpLenMean", np.mean(lenbuffer)) logger.record_tabular("EpRewMean", np.mean(rewbuffer)) logger.record_tabular("EpThisIter", len(lens)) episodes_so_far += len(lens) timesteps_so_far += sum(lens) iters_so_far += 1 logger.record_tabular("EpisodesSoFar", episodes_so_far) logger.record_tabular("TimestepsSoFar", timesteps_so_far) logger.record_tabular("TimeElapsed", time.time() - tstart) if comm.Get_rank() == 0: logger.dump_tabular() return pi