コード例 #1
0
ファイル: server.py プロジェクト: rbessick5/PrairieLearn
def generate(data):

    sf = 2

    # Matrix shape
    M = 3

    myNumber = 2.148233

    # Generating the orthogonal matrix U
    # (numbers rounded with 2 decimal digits)
    X = np.random.rand(M, M)
    Q,R = sla.qr(X)
    U = np.around(Q, sf + 1)

    b = np.random.rand(M)
    bc = b.reshape((M, 1))
    br = b.reshape(1, M)

    data['params']['sf'] = sf
    data['params']['M'] = M
    data['params']['U'] = pl.to_json(U)
    data['params']['myNumber'] = pl.to_json(myNumber)
    data['params']['b'] = pl.to_json(br)
    data['params']['c'] = pl.to_json(bc)


    return data
コード例 #2
0
ファイル: server.py プロジェクト: rohitn01/HackIllinois2020
def generate(data):

    sf = 2

    # Matrix shape
    M = 3

    myNumber = 2.148233

    # Generating the orthogonal matrix U
    # (numbers rounded with 2 decimal digits)
    X = np.random.rand(M, M)
    Q, R = sla.qr(X)
    U = np.around(Q, sf + 1)

    b = np.random.rand(M)
    bc = b.reshape((M, 1))
    br = b.reshape(1, M)

    data['params']['sf'] = sf
    data['params']['M'] = M
    data['params']['U'] = pl.to_json(U)
    data['params']['myNumber'] = pl.to_json(myNumber)
    data['params']['b'] = pl.to_json(br)
    data['params']['c'] = pl.to_json(bc)

    return data
コード例 #3
0
def generate(data):

    # Dimensions
    nInnerMin = 2
    nMax = 5
    nRows = np.random.randint(1,nMax+1)
    nInner = np.random.randint(nInnerMin,nMax+1)
    nCols = np.random.randint(1,nMax+1)

    # Number of digits after the decimal
    nDigits = 1

    # Range of entries
    numMax = 10

    # The two matrices to be multiplied
    A = np.random.random_integers(-numMax,numMax,(nRows,nInner))/(10**nDigits)
    B = np.random.random_integers(-numMax,numMax,(nInner,nCols))/(10**nDigits)

    # Product of these two matrices
    C = A.dot(B)

    # Modify data and return
    data["params"]["A"] = pl.to_json(A)
    data["params"]["B"] = pl.to_json(B)
    data["correct_answers"]["C"] = pl.to_json(C)
コード例 #4
0
ファイル: server.py プロジェクト: cbt-sys/UCB-PrairieLearn
def generate(data):
    df = pd.io.parsers.read_csv("breast-cancer-train.dat", header=None)
    data['params']['df'] = pl.to_json(df.head(15))
    data['params']['matrix'] = pl.to_json(np.random.random((3, 3)))
    data['params']['my_dictionary'] = {'a': 1, 'b': 2, 'c': 3}

    return data
コード例 #5
0
def parse(element_html, data):
    element = lxml.html.fragment_fromstring(element_html)
    name = pl.get_string_attrib(element, 'answers-name')

    # Get true answer
    a_tru = pl.from_json(data['correct_answers'].get(name, None))
    if a_tru is None:
        return
    a_tru = np.array(a_tru)
    if a_tru.ndim != 2:
        raise ValueError('true answer must be a 2D array')
    else:
        m, n = np.shape(a_tru)
        A = np.empty([m, n])

    # Create an array for the submitted answer to be stored in data['submitted_answer'][name]
    # used for display in the answer and submission panels
    # Also creates invalid error messages
    invalid_format = False
    for i in range(m):
        for j in range(n):
            each_entry_name = name + str(n * i + j + 1)
            a_sub = data['submitted_answers'].get(each_entry_name, None)
            if a_sub is None:
                data['submitted_answers'][each_entry_name] = None
                data['format_errors'][
                    each_entry_name] = '(No submitted answer)'
                invalid_format = True
            elif not a_sub:
                data['submitted_answers'][each_entry_name] = None
                data['format_errors'][
                    each_entry_name] = '(Invalid blank entry)'
                invalid_format = True
            else:
                a_sub_parsed = pl.string_to_number(a_sub, allow_complex=False)
                if a_sub_parsed is None:
                    data['submitted_answers'][each_entry_name] = None
                    data['format_errors'][each_entry_name] = '(Invalid format)'
                    invalid_format = True
                elif not np.isfinite(a_sub_parsed):
                    data['submitted_answers'][each_entry_name] = None
                    data['format_errors'][
                        each_entry_name] = '(Invalid format - not finite)'
                    invalid_format = True
                else:
                    data['submitted_answers'][each_entry_name] = pl.to_json(
                        a_sub_parsed)
                    A[i, j] = a_sub_parsed

    if invalid_format:
        with open('pl-matrix-component-input.mustache', 'r',
                  encoding='utf-8') as f:
            data['format_errors'][name] = chevron.render(
                f, {
                    'format_error': True
                }).strip()
        data['submitted_answers'][name] = None
    else:
        data['submitted_answers'][name] = pl.to_json(A)
コード例 #6
0
ファイル: server.py プロジェクト: rohitn01/HackIllinois2020
def generate(data):
    sympy.var('y b a m')
    x = (y - b) / a
    z = m * (sympy.cos(a) + sympy.I * sympy.sin(a))
    c = a + sympy.I * b
    data['correct_answers']['x'] = pl.to_json(x)
    data['correct_answers']['z'] = pl.to_json(z)
    data['correct_answers']['I'] = 'V / R'
    data['correct_answers']['c'] = pl.to_json(c)
コード例 #7
0
def parse(element_html, data):
    element = lxml.html.fragment_fromstring(element_html)
    name = pl.get_string_attrib(element, 'answers-name')

    # Get true answer
    a_tru = pl.from_json(data['correct_answers'].get(name, None))
    if a_tru is None:
        return
    a_tru = np.array(a_tru)
    if a_tru.ndim != 2:
        raise ValueError('true answer must be a 2D array')
    else:
        m, n = np.shape(a_tru)
        A = np.empty([m, n])

    # Create an array for the submitted answer to be stored in data['submitted_answer'][name]
    # used for display in the answer and submission panels
    # Also creates invalid error messages
    invalid_format = False
    for i in range(m):
        for j in range(n):
            each_entry_name = name + str(n * i + j + 1)
            a_sub = data['submitted_answers'].get(each_entry_name, None)
            if a_sub is None:
                data['submitted_answers'][each_entry_name] = None
                data['format_errors'][
                    each_entry_name] = '(No submitted answer)'
                invalid_format = True
            elif not a_sub:
                data['submitted_answers'][each_entry_name] = None
                data['format_errors'][
                    each_entry_name] = '(Invalid blank entry)'
                invalid_format = True
            else:
                a_sub_parsed = pl.string_to_number(a_sub, allow_complex=False)
                if a_sub_parsed is None:
                    data['submitted_answers'][each_entry_name] = None
                    data['format_errors'][each_entry_name] = '(Invalid format)'
                    invalid_format = True
                elif not np.isfinite(a_sub_parsed):
                    data['submitted_answers'][each_entry_name] = None
                    data['format_errors'][
                        each_entry_name] = '(Invalid format - not finite)'
                    invalid_format = True
                else:
                    data['submitted_answers'][each_entry_name] = pl.to_json(
                        a_sub_parsed)
                    A[i, j] = a_sub_parsed

    if invalid_format:
        data['format_errors'][
            name] = 'At least one of the entries has invalid format (empty entries or not a double precision floating point number)'
        data['submitted_answers'][name] = None
    else:
        data['submitted_answers'][name] = pl.to_json(A)
コード例 #8
0
ファイル: server.py プロジェクト: rohitn01/HackIllinois2020
def generate(data):
  data['params']['weight1'] = random.randint(1, 10)
  data['params']['weight2'] = random.randint(1, 10)

  mat = np.random.random((3, 3))
  mat = mat / la.norm(mat, 1, axis=0)
  data['params']['labels'] = pl.to_json(['A', 'B', 'C'])
  data['params']['matrix'] = pl.to_json(mat)

  mat2 = np.random.binomial(1, 0.5, (3, 3))
  data['params']['matrix2'] = pl.to_json(mat2)
コード例 #9
0
ファイル: server.py プロジェクト: rohitn01/HackIllinois2020
def generate(data):
    N = random.choice([2, 3])
    data["params"]["N"] = N
    for i in range(2):
        X = np.random.rand(N, N)
        name = "N" + str(i + 1)
        data["params"][name] = pl.to_json(X)
    for i in range(4):
        M = random.choice([j for j in range(2, 5) if j not in [N]])
        X = np.random.rand(M, M)
        name = "M" + str(i + 1)
        data["params"][name] = pl.to_json(X)
    return data
コード例 #10
0
ファイル: server.py プロジェクト: rbessick5/PrairieLearn
def generate(data):
    N = random.choice([2,3])
    data["params"]["N"] = N
    for i in range(2):
        X = np.random.rand(N,N)
        name = "N" + str(i+1)
        data["params"][name] = pl.to_json(X)
    for i in range(4):
        M = random.choice([j for j in range(2,5) if j not in [N]])
        X = np.random.rand(M,M)
        name = "M" + str(i+1)
        data["params"][name] = pl.to_json(X)
    return data
コード例 #11
0
def parse(element_html, data):
    element = lxml.html.fragment_fromstring(element_html)
    name = pl.get_string_attrib(element, 'answers-name')

    # Get true answer
    a_tru = pl.from_json(data['correct_answers'].get(name, None))
    if a_tru is None:
        return
    a_tru = np.array(a_tru)
    if a_tru.ndim != 2:
        raise ValueError('true answer must be a 2D array')
    else:
        m, n = np.shape(a_tru)
        A = np.empty([m, n])

    # Create an array for the submitted answer to be stored in data['submitted_answer'][name]
    # used for display in the answer and submission panels
    # Also creates invalid error messages
    invalid_format = False
    for i in range(m):
        for j in range(n):
            each_entry_name = name + str(n * i + j + 1)
            a_sub = data['submitted_answers'].get(each_entry_name, None)
            if a_sub is None:
                data['submitted_answers'][each_entry_name] = None
                data['format_errors'][each_entry_name] = '(No submitted answer)'
                invalid_format = True
            elif not a_sub:
                data['submitted_answers'][each_entry_name] = None
                data['format_errors'][each_entry_name] = '(Invalid blank entry)'
                invalid_format = True
            else:
                a_sub_parsed = pl.string_to_number(a_sub, allow_complex=False)
                if a_sub_parsed is None:
                    data['submitted_answers'][each_entry_name] = None
                    data['format_errors'][each_entry_name] = '(Invalid format)'
                    invalid_format = True
                elif not np.isfinite(a_sub_parsed):
                    data['submitted_answers'][each_entry_name] = None
                    data['format_errors'][each_entry_name] = '(Invalid format - not finite)'
                    invalid_format = True
                else:
                    data['submitted_answers'][each_entry_name] = pl.to_json(a_sub_parsed)
                    A[i, j] = a_sub_parsed

    if invalid_format:
        data['format_errors'][name] = 'At least one of the entries has invalid format (empty entries or not a double precision floating point number)'
        data['submitted_answers'][name] = None
    else:
        data['submitted_answers'][name] = pl.to_json(A)
コード例 #12
0
def generate(data):

    # Number of digits after the decimal
    nDigits = 1
    # Dimension
    n = np.random.randint(2,4)
    # Matrix
    A = np.round( np.random.rand(n,n), nDigits)
    # Product
    B = [email protected]
    # Return data
    data["params"]["nDigits"] = nDigits
    data["params"]["sigfigs"] = nDigits + 1
    data["params"]["A"] = pl.to_json(A)
    data["correct_answers"]["B"] = pl.to_json(B)
コード例 #13
0
def parse(element_html, data):
    element = lxml.html.fragment_fromstring(element_html)
    name = pl.get_string_attrib(element, 'answers-name')

    # Get submitted answer or return parse_error if it does not exist
    a_sub = data['submitted_answers'].get(name, None)
    if a_sub is None:
        data['format_errors'][name] = 'No submitted answer.'
        data['submitted_answers'][name] = None
        return

    if a_sub.strip() == '':
        opts = {
            'format_error': True,
            'format_error_message': 'the submitted answer was blank.'
        }
        with open('pl-integer-input.mustache', 'r', encoding='utf-8') as f:
            format_str = chevron.render(f, opts).strip()
        data['format_errors'][name] = format_str
        data['submitted_answers'][name] = None
        return

    # Convert to integer
    try:
        a_sub_parsed = pl.string_to_integer(a_sub)
        if a_sub_parsed is None:
            raise ValueError('invalid submitted answer (wrong type)')
        data['submitted_answers'][name] = pl.to_json(a_sub_parsed)
    except Exception:
        with open('pl-integer-input.mustache', 'r', encoding='utf-8') as f:
            format_str = chevron.render(f, {'format_error': True}).strip()
        data['format_errors'][name] = format_str
        data['submitted_answers'][name] = None
コード例 #14
0
ファイル: server.py プロジェクト: cbt-sys/UCB-PrairieLearn
def generate(data):

    df = pd.read_csv("clientFilesQuestion/properties.csv")
    selected_columns = [
        "Designation", "Depth (in)", 'Width (in)',
        'Moment of Inertia - Ix (in^4)', 'Moment of Inertia - Iy (in^4)'
    ]

    m = len(df)
    pos1 = np.random.randint(0, m - 10)
    # note that in general, you will need to do a check if m > 10.
    # for simplicity, I am not doing any safety check because I know the length of my table is greater than 10
    pos2 = pos1 + 10
    df = df[selected_columns].iloc[pos1:pos2]

    m = len(df)
    select = random.sample(range(1, m), 4)

    name_list = df['Designation'].iloc[select]
    for i, name in enumerate(name_list):
        data["params"]["name" + str(i + 1)] = name

    Ix = df['Moment of Inertia - Ix (in^4)'].iloc[select].values
    h = df['Depth (in)'].iloc[select].values

    M = np.random.randint(2, 8)
    data["params"]["M"] = M

    data["params"]["df"] = pl.to_json(df)

    for i in range(len(h)):
        sigma = M * (h[i] / 2) / Ix[i]
        data["correct_answers"]["sigma" + str(i + 1)] = sigma * 100
コード例 #15
0
def generate(data):
    
    # Generates number of events. 
    x_events = random.randint(4, 7)
    
    # Control rounding
    n_digits = 2
    
    # Generate random integers up to a number
    r = [float(random.randint(1, 100)) for i in range(x_events)]
    
    # Sum events
    s = sum(r)
    
    # Divide each value by sum to bring into [0, 1]
    # Round events
    a = [ round(i/s, n_digits) for i in r ]
    
    # Enforce probability summation constraint
    prob_sum = sum(a)
    capped_sum = round(1 - prob_sum, n_digits)
    
    # Truncate
    if not capped_sum.is_integer():
      max_val = max(a)
      max_ind = a.index(max_val)
      a[max_ind] += capped_sum

    d = {'P(X)': a}
    df = pd.DataFrame(data = d)
    
    data['params']['df'] = pl.to_json(df)

    data['correct_answers']['p_sum'] = sum(a)
    data['correct_answers']['big_event'] = a.index(max(a))
コード例 #16
0
ファイル: server.py プロジェクト: cbt-sys/UCB-PrairieLearn
def generate(data):

    website_list = [
        "Google", "Wikipedia", "YouTube", "Instagram", "Stackoverflow",
        "Twitter", "NYTimes", "The Guardian", "taobao", "Amazon", "Reddit",
        "Netflix", "Linkedin", "Ebay", "GitHub"
    ]
    npages = 4
    max_n_links = 3
    min_n_links = 1

    # Getting the Markov matrix
    M, page_names = create_markov_matrix(website_list, npages, max_n_links,
                                         min_n_links)
    data["params"]["M"] = pl.to_json(M)
    data["params"]["page_names"] = page_names

    # Getting the eigenvector
    G = 0.85 * M + (0.15 / npages) * np.ones((npages, npages))
    xstar = power_iteration(G, 1e-8)
    probs = np.sort(xstar)[::-1]
    x_index_sorted = np.argsort(xstar)[::-1]
    first = page_names[x_index_sorted[0]]

    # Setting up the dropdown list
    dropdown_list = []
    for name in page_names:
        if name != first:
            dropdown_list.append({'tag': 'false', 'ans': name})
        else:
            dropdown_list.append({'tag': 'true', 'ans': name})
    data["params"]["sites"] = dropdown_list
コード例 #17
0
def parse(element_html, data):
    element = lxml.html.fragment_fromstring(element_html)
    name = pl.get_string_attrib(element, 'answers-name')
    allow_complex = pl.get_boolean_attrib(element, 'allow-complex',
                                          ALLOW_COMPLEX_DEFAULT)

    # Get submitted answer or return parse_error if it does not exist
    a_sub = data['submitted_answers'].get(name, None)
    if a_sub is None:
        data['format_errors'][name] = 'No submitted answer.'
        data['submitted_answers'][name] = None
        return

    # Convert to float or complex
    try:
        a_sub_parsed = pl.string_to_number(a_sub, allow_complex=allow_complex)
        if a_sub_parsed is None:
            raise ValueError('invalid submitted answer (wrong type)')
        if not np.isfinite(a_sub_parsed):
            raise ValueError('invalid submitted answer (not finite)')
        data['submitted_answers'][name] = pl.to_json(a_sub_parsed)
    except Exception:
        if allow_complex:
            data['format_errors'][
                name] = 'Invalid format. The submitted answer could not be interpreted as a double-precision floating-point or complex number.'
        else:
            data['format_errors'][
                name] = 'Invalid format. The submitted answer could not be interpreted as a double-precision floating-point number.'
        data['submitted_answers'][name] = None
コード例 #18
0
def generate(data):

    df = pd.read_csv("clientFilesQuestion/properties.csv")
    selected_columns = [
        "Designation", "Depth (in)", 'Width (in)',
        'Moment of Inertia - Ix (in^4)', 'Moment of Inertia - Iy (in^4)'
    ]

    m = len(df)
    pos1 = np.random.randint(0, m - 10)
    # note that in general, you will need to do a check if m > 10.
    # for simplicity, I am not doing any safety check because I know the length of my table is greater than 10
    pos2 = pos1 + 10
    df = df[selected_columns].iloc[pos1:pos2]

    data["params"]["df"] = pl.to_json(df)

    m = len(df)
    select = np.random.randint(0, m)

    name = df['Designation'].iloc[select]
    data["params"]["name"] = name

    Ix = df['Moment of Inertia - Ix (in^4)'].iloc[select]
    h = df['Depth (in)'].iloc[select]

    M = np.random.randint(2, 8)
    data["params"]["M"] = M

    sigma = M * (h / 2) / Ix

    data["correct_answers"]["sigma"] = sigma * 100
コード例 #19
0
ファイル: pl-string-input.py プロジェクト: wyiq/PrairieLearn
def parse(element_html, data):
    element = lxml.html.fragment_fromstring(element_html)
    name = pl.get_string_attrib(element, 'answers-name')
    # Get allow-blank option
    allow_blank = pl.get_string_attrib(element, 'allow-blank',
                                       ALLOW_BLANK_DEFAULT)
    normalize_to_ascii = pl.get_boolean_attrib(element, 'normalize-to-ascii',
                                               NORMALIZE_TO_ASCII_DEFAULT)

    # Get submitted answer or return parse_error if it does not exist
    a_sub = data['submitted_answers'].get(name, None)
    if a_sub is None:
        data['format_errors'][name] = 'No submitted answer.'
        data['submitted_answers'][name] = None
        return

    if normalize_to_ascii:
        a_sub = unidecode(a_sub)
        data['submitted_answers'][name] = a_sub

    if not a_sub and not allow_blank:
        data['format_errors'][
            name] = 'Invalid format. The submitted answer was left blank.'
        data['submitted_answers'][name] = None
    else:
        data['submitted_answers'][name] = pl.to_json(a_sub)
コード例 #20
0
def parse(element_html, data):
    # By convention, this function returns at the first error found

    element = lxml.html.fragment_fromstring(element_html)
    name = pl.get_string_attrib(element, 'answers-name')
    allow_complex = pl.get_boolean_attrib(element, 'allow-complex',
                                          ALLOW_COMPLEX_DEFAULT)

    # Get submitted answer or return parse_error if it does not exist
    a_sub = data['submitted_answers'].get(name, None)
    if a_sub is None:
        data['format_errors'][name] = get_format_string('No submitted answer.')
        data['submitted_answers'][name] = None
        return

    # Convert submitted answer to numpy array (return parse_error on failure)
    (a_sub_parsed, info) = pl.string_to_2darray(a_sub,
                                                allow_complex=allow_complex)
    if a_sub_parsed is None:
        data['format_errors'][name] = get_format_string(info['format_error'])
        data['submitted_answers'][name] = None
        return

    # Replace submitted answer with numpy array
    data['submitted_answers'][name] = pl.to_json(a_sub_parsed)

    # Store format type
    if '_pl_matrix_input_format' not in data['submitted_answers']:
        data['submitted_answers']['_pl_matrix_input_format'] = {}
    data['submitted_answers']['_pl_matrix_input_format'][name] = info[
        'format_type']
コード例 #21
0
def parse(element_html, data):
    # By convention, this function returns at the first error found

    element = lxml.html.fragment_fromstring(element_html)
    name = pl.get_string_attrib(element, 'answers-name')
    allow_complex = pl.get_boolean_attrib(element, 'allow-complex', False)

    # Get submitted answer or return parse_error if it does not exist
    a_sub = data['submitted_answers'].get(name, None)
    if a_sub is None:
        data['format_errors'][name] = 'No submitted answer.'
        data['submitted_answers'][name] = None
        return

    # Convert submitted answer to numpy array (return parse_error on failure)
    (a_sub_parsed, info) = pl.string_to_2darray(a_sub, allow_complex=allow_complex)
    if a_sub_parsed is None:
        data['format_errors'][name] = info['format_error']
        data['submitted_answers'][name] = None
        return

    # Replace submitted answer with numpy array
    data['submitted_answers'][name] = pl.to_json(a_sub_parsed)

    # Store format type
    if '_pl_matrix_input_format' not in data['submitted_answers']:
        data['submitted_answers']['_pl_matrix_input_format'] = {}
    data['submitted_answers']['_pl_matrix_input_format'][name] = info['format_type']
コード例 #22
0
ファイル: server.py プロジェクト: wyiq/PrairieLearn
def generate(data):
    data['params']['weight1'] = random.randint(1, 10)
    data['params']['weight2'] = random.randint(1, 10)

    mat = np.random.random((3, 3))
    mat = mat / la.norm(mat, 1, axis=0)
    data['params']['labels'] = pl.to_json(['A', 'B', 'C'])
    data['params']['matrix'] = pl.to_json(mat)

    mat2 = np.random.binomial(1, 0.5, (3, 3))
    data['params']['matrix2'] = pl.to_json(mat2)

    # chosen by dice roll, guaranteed to be random
    edge_mat = np.array([[-1, 0, 1, 0], [0, -1, 1, 0], [1, 0, 0, -1],
                         [0, 1, -1, 0]])
    data['params']['edge-inc-mat'] = pl.to_json(edge_mat)
コード例 #23
0
def generate(data):

    # Dimensions
    n = np.random.randint(3, 5)
    m = np.random.randint(2, 4)

    A = np.round(np.random.rand(m, n), 2)
    b = np.round(np.random.rand(n), 2)

    # Product of these two matrices
    C = A @ b

    # # Modify data and return
    data["params"]["A"] = pl.to_json(A)
    data["params"]["b"] = pl.to_json(b.reshape(n, 1))
    data["correct_answers"]["C"] = pl.to_json(C.reshape(m, 1))
コード例 #24
0
ファイル: server.py プロジェクト: qingye3/PrairieLearn
def generate(data):

    N = 2
    A =  np.random.rand(N,N)
    sf = 2
    B = np.round(A,sf)
    x =  np.array([[1,2,3,4]])

    data["params"]["sf"] = sf
    data["params"]["in"] = pl.to_json(B)
    data["params"]["x"] = pl.to_json(x)

    data["correct_answers"]["out1"] = pl.to_json(B)
    data["correct_answers"]["out2"] = pl.to_json(B)
    data["correct_answers"]["out3"] = pl.to_json(x)

    return data
コード例 #25
0
def generate(data):

    mu_o = random.choice([19.7, 19.8, 19.9, 20, 20.1, 20.2])
    std_gen = random.choice([1.3, 1.4, 1.5])
    sample_size = random.randint(8, 11)
    # dataset
    sample_data = np.round(np.random.normal(mu_o, std_gen, sample_size), 1)
    data['params']['array'] = pl.to_json(sample_data)

    # computing the correct answer
    data['correct_answers']['std'] = sample_data.std()
コード例 #26
0
def generate(data):

    # Number of digits after the decimal point to display
    d = 3

    # Generate random vectors
    u = np.round(np.random.random(4), d)
    v = np.round(np.random.random(4), d)
    a = np.random.randint(1, 10)
    b = np.random.randint(1, 10)
    w = np.outer(a * u, b * v)

    # Release parameters
    data["params"]["u"] = pl.to_json(u)
    data["params"]["v"] = pl.to_json(v)
    data["params"]["a"] = a
    data["params"]["b"] = b
    data["params"]["d"] = d
    data["params"]["d2"] = d + 1
    data["correct_answers"]["w"] = pl.to_json(w)
コード例 #27
0
def generate(data):
    data["params"]["names_for_user"] = []
    data["params"]["names_from_user"] = [{
        "name": "df",
        "description": "dataframe as described above.",
        "type": "Pandas DataFrame"
    }]
    data['params']['df'] = pl.to_json(
        pd.DataFrame(data={
            'a': [1, 2],
            'b': [3, 4]
        }))
コード例 #28
0
ファイル: server.py プロジェクト: cbt-sys/UCB-PrairieLearn
def generate(data):

    # Generate a random value
    x = random.uniform(1, 2)

    # Fill in the Blank Inputs
    data["correct_answers"]["ans_rtol"] = x
    data["correct_answers"]["ans_sig"] = round(x, 2)
    data["correct_answers"]["int_value"] = 42
    data["correct_answers"]["string_value"] = "Learn"

    # Symbolic
    x, y = sympy.symbols('x y')
    data['correct_answers']['symbolic_math'] = pl.to_json(x + y + 1)

    # Matrix Fill in the Blank
    data['correct_answers']['matrixA'] = pl.to_json(np.matrix('1 2; 3 4'))

    # Programming Variant of Supplying a Matrix
    data['correct_answers']['matrixB'] = pl.to_json(np.matrix('1 2; 3 4'))

    # Threejs
    data['correct_answers']['robotC'] = [[1, 0, 0], [0, 45, 0]]

    # Output elements
    data['params']['matrixC'] = pl.to_json(np.matrix('5 6; 7 8'))
    data['params']['matrixD'] = pl.to_json(np.matrix('-1 4; 3 2'))

    # Display python variable contents
    data_dictionary = { 'a': 1, 'b': 2, 'c': 3 }
    data['params']['data_dictionary'] = pl.to_json(data_dictionary)

    # Display a pandas data frame
    d = {'col1': [1, 2], 'col2': [3, 4]}
    df = pd.DataFrame(data=d)
    data['params']['df'] = pl.to_json(df)

    # Display a dynamically generated graph
    mat = np.random.random((3, 3))
    mat = mat / np.linalg.norm(mat, 1, axis=0)
    data['params']['labels'] = pl.to_json(['A', 'B', 'C'])
    data['params']['matrix'] = pl.to_json(mat)

    # Overlay
    data['correct_answers']['c'] = (2 * (3 ** 2)) ** 0.5
コード例 #29
0
def parse(element_html, data):
    element = lxml.html.fragment_fromstring(element_html)
    name = pl.get_string_attrib(element, 'answers-name')
    base = pl.get_integer_attrib(element, 'base', BASE_DEFAULT)

    # Get submitted answer or return parse_error if it does not exist
    a_sub = data['submitted_answers'].get(name, None)
    if a_sub is None:
        data['format_errors'][name] = 'No submitted answer.'
        data['submitted_answers'][name] = None
        return

    if a_sub.strip() == '':

        if pl.get_boolean_attrib(element, 'allow-blank', ALLOW_BLANK_DEFAULT):
            a_sub = pl.get_integer_attrib(element, 'blank-value',
                                          BLANK_VALUE_DEFAULT)
        else:
            opts = {
                'format_error': True,
                'format_error_message': 'the submitted answer was blank.',
                'base': base,
                'default_base': base == BASE_DEFAULT or base == 0,
                'zero_base': base == 0
            }
            with open('pl-integer-input.mustache', 'r', encoding='utf-8') as f:
                format_str = chevron.render(f, opts).strip()
                data['format_errors'][name] = format_str
                data['submitted_answers'][name] = None
            return

    # Convert to integer
    try:
        a_sub_parsed = pl.string_to_integer(str(a_sub), base)
        if a_sub_parsed is None:
            raise ValueError('invalid submitted answer (wrong type)')
        if a_sub_parsed > 2**53 - 1 or a_sub_parsed < -((2**53) - 1):
            data['format_errors'][
                name] = 'correct answer must be between -9007199254740991 and +9007199254740991 (that is, between -(2^53 - 1) and +(2^53 - 1)).'
        data['submitted_answers'][name] = pl.to_json(a_sub_parsed)
    except Exception:
        with open('pl-integer-input.mustache', 'r', encoding='utf-8') as f:
            format_str = chevron.render(
                f, {
                    'format_error': True,
                    'base': base,
                    'default_base': base == BASE_DEFAULT or base == 0,
                    'zero_base': base == 0
                }).strip()
        data['format_errors'][name] = format_str
        data['submitted_answers'][name] = None
コード例 #30
0
ファイル: server.py プロジェクト: cbt-sys/UCB-PrairieLearn
def generate(data):
    n = 4
    choice = np.random.choice(np.arange(2, dtype='int'), p=[.7, .3])
    if choice == 0:
        # random graph
        correct = np.random.choice([0, 1], size=(n, n), p=[0.5, 0.5])
    elif choice == 1:
        # ring
        shift = np.random.choice([1, -1]) * np.random.randint(1, n - 2)
        correct = np.roll(np.diag(np.ones(n)), shift)

    data["correct_answers"]["mat"] = pl.to_json(correct.T)
    data["params"]["mat"] = data["correct_answers"]["mat"]
    return data
コード例 #31
0
ファイル: server.py プロジェクト: sotiriakv/PrairieLearn
def generate(data):

    # Fill in the Blank Inputs
    data["correct_answers"]["numericvalue"] = 3.14
    data["correct_answers"]["integervalue"] = 42
    data["correct_answers"]["stringvalue"] = "PrairieLearn"

    # Symbolic
    sympy.var('x y')
    data['correct_answers']['mathexpvalue'] = pl.to_json(x + y + 1)

    # Matrix Fill in the Blank
    data['correct_answers']['matrixA'] = pl.to_json(np.matrix('1 2; 3 4'))

    # Programming Variant of Supplying a Matrix
    data['correct_answers']['matrixB'] = pl.to_json(np.matrix('1 2; 3 4'))

    # Threejs
    data['correct_answers']['robotC'] = [[1, 0, 0], [0, 45, 0]]

    # Output elements
    data['params']['matrixC'] = pl.to_json(np.matrix('5 6; 7 8'))
    data['params']['matrixD'] = pl.to_json(np.matrix('-1 4; 3 2'))
コード例 #32
0
def parse(element_html, data):
    element = lxml.html.fragment_fromstring(element_html)
    name = pl.get_string_attrib(element, 'answers-name')
    allow_fractions = pl.get_boolean_attrib(element, 'allow-fractions',
                                            ALLOW_FRACTIONS_DEFAULT)

    # Get true answer
    a_tru = pl.from_json(data['correct_answers'].get(name, None))
    if a_tru is None:
        return
    a_tru = np.array(a_tru)
    if a_tru.ndim != 2:
        raise ValueError('true answer must be a 2D array')
    else:
        m, n = np.shape(a_tru)
        A = np.empty([m, n])

    # Create an array for the submitted answer to be stored in data['submitted_answer'][name]
    # used for display in the answer and submission panels
    # Also creates invalid error messages
    invalid_format = False
    for i in range(m):
        for j in range(n):
            each_entry_name = name + str(n * i + j + 1)
            a_sub = data['submitted_answers'].get(each_entry_name, None)
            value, newdata = pl.string_fraction_to_number(a_sub,
                                                          allow_fractions,
                                                          allow_complex=False)
            if value is not None:
                A[i, j] = value
                data['submitted_answers'][each_entry_name] = newdata[
                    'submitted_answers']
            else:
                invalid_format = True
                data['format_errors'][each_entry_name] = newdata[
                    'format_errors']
                data['submitted_answers'][each_entry_name] = None

    if invalid_format:
        with open('pl-matrix-component-input.mustache', 'r',
                  encoding='utf-8') as f:
            data['format_errors'][name] = chevron.render(
                f, {
                    'format_error': True,
                    'allow_fractions': allow_fractions
                }).strip()
        data['submitted_answers'][name] = None
    else:
        data['submitted_answers'][name] = pl.to_json(A)
コード例 #33
0
ファイル: server.py プロジェクト: cbt-sys/UCB-PrairieLearn
def generate(data):

    mu_o = random.choice([19.7, 19.8, 19.9, 20, 20.1, 20.2])
    std_gen = random.choice([1.3, 1.4, 1.5])
    sample_size = random.randint(8, 11)
    # dataset
    sample_data = np.round(np.random.normal(mu_o, std_gen, sample_size), 1)

    # providing the dataset as pandas frame
    df = pd.DataFrame(data=sample_data)
    df.columns = ['Volume (oz)']
    data['params']['df'] = pl.to_json(df)

    # computing the correct answer
    data['correct_answers']['average'] = sample_data.mean()
コード例 #34
0
def generate(data):

    # Sample two complex numbers with real and imaginary parts that are
    # random integers between -5 and 5 (inclusive)
    a = random.randint(-5, 5) + random.randint(-5, 5)*1j
    b = random.randint(-5, 5) + random.randint(-5, 5)*1j

    # Put string representations of these two complex numbers into data['params']
    data['params']['a'] = '{:.0f}'.format(a)
    data['params']['b'] = '{:.0f}'.format(b)

    # Compute the sum of these two complex numbers
    c = a + b

    # Put the sum into data['correct_answers']
    data['correct_answers']['c'] = pl.to_json(c)
コード例 #35
0
def parse(element_html, data):
    element = lxml.html.fragment_fromstring(element_html)
    name = pl.get_string_attrib(element, 'answers-name')
    # Get allow-blank option
    allow_blank = pl.get_string_attrib(element, 'allow-blank', False)

    # Get submitted answer or return parse_error if it does not exist
    a_sub = data['submitted_answers'].get(name, None)
    if a_sub is None:
        data['format_errors'][name] = 'No submitted answer.'
        data['submitted_answers'][name] = None
        return

    if not a_sub and not allow_blank:
        data['format_errors'][name] = 'Invalid format. The submitted answer was left blank.'
        data['submitted_answers'][name] = None
    else:
        data['submitted_answers'][name] = pl.to_json(a_sub)
コード例 #36
0
def parse(element_html, data):
    element = lxml.html.fragment_fromstring(element_html)
    name = pl.get_string_attrib(element, 'answers-name')

    # Get submitted answer or return parse_error if it does not exist
    a_sub = data['submitted_answers'].get(name, None)
    if a_sub is None:
        data['format_errors'][name] = 'No submitted answer.'
        data['submitted_answers'][name] = None
        return

    # Convert to integer
    try:
        a_sub_parsed = pl.string_to_integer(a_sub)
        if a_sub_parsed is None:
            raise ValueError('invalid submitted answer (wrong type)')
        if not np.isfinite(a_sub_parsed):
            raise ValueError('invalid submitted answer (not finite)')
        data['submitted_answers'][name] = pl.to_json(a_sub_parsed)
    except Exception:
        data['format_errors'][name] = 'Invalid format. The submitted answer was not an integer.'
        data['submitted_answers'][name] = None
コード例 #37
0
ファイル: server.py プロジェクト: rbessick5/PrairieLearn
def generate(data):

    N = 2
    A =  np.random.rand(N,N)
    sf = 2
    B = np.round(A,sf)
    x =  np.array([[1,2,3,4]])
    long_matrix = np.array([[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]])

    data["params"]["sf"] = sf
    data["params"]["in"] = pl.to_json(B)
    data["params"]["x"] = pl.to_json(x)

    data["correct_answers"]["out1"] = pl.to_json(B)
    data["correct_answers"]["out2"] = pl.to_json(B)
    data["correct_answers"]["out3"] = pl.to_json(x)
    data["correct_answers"]["out4"] = pl.to_json(long_matrix)

    return data