def main(): # 读取原始文件数据,标签 print("-------读取原始文件数据,标签--------") signal_data, signal_labels = readFile(filepath) # 将数据和标签的形状进行调整 print("-----将数据和标签的形状进行调整------") signal_re, labels_re = data_reshape(signal_data, signal_labels) re_data = pre_data_reshape(signal_re) # 数据进行Z-score print("----------数据进行Z-score----------") z_score_data = more_norm_dataset(re_data) # 数据进行1D->2D的转化 print("--------数据进行1D->2D的转化--------") data_1Dto2D = more_dataset_1Dto2D(z_score_data) print(data_1Dto2D.shape) dict_data = {"data": data_1Dto2D, "labels": labels_re} with open('CNN_train.pkl', 'wb') as f: pickle.dump(dict_data, f, pickle.HIGHEST_PROTOCOL) # 读取.pkl文件 # with open('CNN_train.pkl', 'rb') as f: # data = pickle.load(f) # data_1Dto2D = data['data'] # labels_re = data['labels'] # 开始CNN的训练 print("-----------开始CNN的训练-----------") backward(data_1Dto2D, labels_re)
def main(): signal_data, signal_labels = readFile(backward.filepath) signal_re, labels_re = data_reshape_test(signal_data, signal_labels) print("signal_re.shape:") print(signal_re.shape) print("labels_re.shape:") print(labels_re.shape) re_data = pre_data_reshape(signal_re) print("re_data.shape:") print(re_data.shape) z_score_data = more_norm_dataset(re_data) data_1Dto2D = more_dataset_1Dto2D(z_score_data) print("data_1Dto2D.shape:") print(data_1Dto2D.shape) test(data_1Dto2D, labels_re)
def main(): signal_data, signal_labels = readFile(backward.filepath) signal_re, labels_re = data_reshape_test(signal_data, signal_labels) print("signal_re.shape:") print(signal_re.shape) print("labels_re.shape:") print(labels_re.shape) re_data = pre_data_reshape(signal_re) print("re_data.shape:") print(re_data.shape) z_score_data = more_norm_dataset(re_data) data_1Dto2D = more_dataset_1Dto2D(z_score_data) print("data_1Dto2D.shape:") print(data_1Dto2D.shape) dict_data = {"data": data_1Dto2D, "labels": labels_re} with open('CNN_test.pkl', 'wb') as f: pickle.dump(dict_data, f, pickle.HIGHEST_PROTOCOL) print("okkkkkkkkkkkkk")
def main(): # 读取原始文件数据,标签 print("-------读取原始文件数据,标签--------") signal_data, signal_labels = readFile(filepath) # 将数据和标签的形状进行调整 print("-----将数据和标签的形状进行调整------") signal_re, labels_re = data_reshape(signal_data, signal_labels) re_data = pre_data_reshape(signal_re) # 数据进行Z-score print("----------数据进行Z-score----------") z_score_data = more_norm_dataset(re_data) # 数据进行1D->2D的转化 print("--------数据进行1D->2D的转化--------") data_1Dto2D = more_dataset_1Dto2D(z_score_data) print(data_1Dto2D.shape) # 开始CNN的训练 print("-----------开始CNN的训练-----------") backward(data_1Dto2D, labels_re)