コード例 #1
0
def compare_evolutions():
    '''
    Compare precession averaged and orbit averaged integrations. Plot the
    evolution of xi, J, S and their relative differences between the two
    approaches. Since precession-averaged estimates of S require a random
    sampling, this plot will look different every time this routine is executed.
    Output is saved in ./spin_angles.pdf.
    
    **Run using**

        import precession.test
        precession.test.compare_evolutions()
    '''

    fig = pylab.figure(figsize=(6, 6))  # Create figure object and axes
    L, Ws, Wm, G = 0.85, 0.15, 0.3, 0.03  # Sizes
    ax_Sd = fig.add_axes([0, 0, L, Ws])  # bottom-small
    ax_S = fig.add_axes([0, Ws, L, Wm])  # bottom-main
    ax_Jd = fig.add_axes([0, Ws + Wm + G, L, Ws])  # middle-small
    ax_J = fig.add_axes([0, Ws + Ws + Wm + G, L, Wm])  # middle-main
    ax_xid = fig.add_axes([0, 2 * (Ws + Wm + G), L, Ws])  # top-small
    ax_xi = fig.add_axes([0, Ws + 2 * (Ws + Wm + G), L, Wm])  # top-main

    q = 0.8  # Mass ratio. Must be q<=1.
    chi1 = 0.6  # Primary spin. Must be chi1<=1
    chi2 = 1.  # Secondary spin. Must be chi2<=1
    M, m1, m2, S1, S2 = precession.get_fixed(q, chi1,
                                             chi2)  # Total-mass units M=1
    ri = 100. * M  # Initial separation.
    rf = 10. * M  # Final separation.
    r_vals = numpy.linspace(ri, rf, 1001)  # Output requested
    Ji = 2.24  # Magnitude of J: Jmin<J<Jmax as given by J_lim
    xi = -0.5  # Effective spin: xi_low<xi<xi_up as given by xi_allowed

    Jf_P = precession.evolve_J(xi, Ji, r_vals, q, S1, S2)  # Pr.av. integration
    Sf_P = [
        precession.samplingS(xi, J, q, S1, S2, r)
        for J, r in zip(Jf_P[0::10], r_vals[0::10])
    ]  # Resample S (reduce output for clarity)
    Sb_min, Sb_max = zip(*[
        precession.Sb_limits(xi, J, q, S1, S2, r)
        for J, r in zip(Jf_P, r_vals)
    ])  # Envelopes
    S = numpy.average([precession.Sb_limits(xi, Ji, q, S1, S2,
                                            ri)])  # Initialize S
    Jf_O, xif_O, Sf_O = precession.orbit_averaged(Ji, xi, S, r_vals, q, S1,
                                                  S2)  # Orb.av. integration

    Pcol, Ocol, Dcol = 'blue', 'red', 'green'
    Pst, Ost = 'solid', 'dashed'
    ax_xi.axhline(xi, c=Pcol, ls=Pst, lw=2)  # Plot xi, pr.av. (constant)
    ax_xi.plot(r_vals, xif_O, c=Ocol, ls=Ost, lw=2)  # Plot xi, orbit averaged
    ax_xid.plot(r_vals, (xi - xif_O) / xi * 1e11, c=Dcol,
                lw=2)  # Plot xi deviations (rescaled)
    ax_J.plot(r_vals, Jf_P, c=Pcol, ls=Pst, lw=2)  # Plot J, pr.av.
    ax_J.plot(r_vals, Jf_O, c=Ocol, ls=Ost, lw=2)  # Plot J, orb.av
    ax_Jd.plot(r_vals, (Jf_P - Jf_O) / Jf_O * 1e3, c=Dcol,
               lw=2)  # Plot J deviations (rescaled)
    ax_S.scatter(r_vals[0::10], Sf_P, facecolor='none',
                 edgecolor=Pcol)  # Plot S, pr.av. (resampled)
    ax_S.plot(r_vals, Sb_min, c=Pcol, ls=Pst,
              lw=2)  # Plot S, pr.av. (envelopes)
    ax_S.plot(r_vals, Sb_max, c=Pcol, ls=Pst,
              lw=2)  # Plot S, pr.av. (envelopes)
    ax_S.plot(r_vals, Sf_O, c=Ocol, ls=Ost, lw=2)  # Plot S, orb.av (evolved)
    ax_Sd.plot(r_vals[0::10], (Sf_P - Sf_O[0::10]) / Sf_O[0::10], c=Dcol,
               lw=2)  # Plot S deviations

    # Options for nice plotting
    for ax in [ax_xi, ax_xid, ax_J, ax_Jd, ax_S, ax_Sd]:
        ax.set_xlim(ri, rf)
        ax.yaxis.set_label_coords(-0.16, 0.5)
        ax.spines['left'].set_lw(1.5)
        ax.spines['right'].set_lw(1.5)
    for ax in [ax_xi, ax_J, ax_S]:
        ax.spines['top'].set_lw(1.5)
    for ax in [ax_xid, ax_Jd, ax_Sd]:
        ax.axhline(0, c='black', ls='dotted')
        ax.spines['bottom'].set_lw(1.5)
    for ax in [ax_xid, ax_J, ax_Jd, ax_S]:
        ax.set_xticklabels([])
    ax_xi.set_ylim(-0.55, -0.45)
    ax_J.set_ylim(0.4, 2.3)
    ax_S.set_ylim(0.24, 0.41)
    ax_xid.set_ylim(-0.2, 1.2)
    ax_Jd.set_ylim(-3, 5.5)
    ax_Sd.set_ylim(-0.7, 0.7)
    ax_xid.yaxis.set_major_locator(matplotlib.ticker.MultipleLocator(0.5))
    ax_Jd.yaxis.set_major_locator(matplotlib.ticker.MultipleLocator(2))
    ax_S.yaxis.set_major_locator(matplotlib.ticker.MultipleLocator(0.05))
    ax_Sd.yaxis.set_major_locator(matplotlib.ticker.MultipleLocator(0.5))
    ax_xi.xaxis.set_ticks_position('top')
    ax_xi.xaxis.set_label_position('top')
    ax_Sd.set_xlabel("$r/M$")
    ax_xi.set_xlabel("$r/M$")
    ax_xi.set_ylabel("$\\xi$")
    ax_J.set_ylabel("$J/M^2$")
    ax_S.set_ylabel("$S/M^2$")
    ax_xid.set_ylabel("$\\Delta\\xi/\\xi \;[10^{-11}]$")
    ax_Jd.set_ylabel("$\\Delta J/J \;[10^{-3}]$")
    ax_Sd.set_ylabel("$\\Delta S / S$")

    fig.savefig("compare_evolutions.pdf", bbox_inches='tight')  # Save pdf file
コード例 #2
0
def phase_resampling():
    '''
    Precessional phase resampling. The magnidute of the total spin S is sampled
    according to |dS/dt|^-1, which correspond to a flat distribution in t(S).
    Output is saved in ./phase_resampling.pdf and data stored in
    `precession.storedir'/phase_resampling_.dat


    **Run using**

        import precession.test
        precession.test.phase_resampling()
    '''

    fig = pylab.figure(figsize=(6, 6))  #Create figure object and axes
    ax_tS = fig.add_axes([0, 0, 0.6, 0.6])  #bottom-left
    ax_td = fig.add_axes([0.65, 0, 0.3, 0.6])  #bottom-right
    ax_Sd = fig.add_axes([0, 0.65, 0.6, 0.3])  #top-left

    q = 0.5  # Mass ratio. Must be q<=1.
    chi1 = 0.3  # Primary spin. Must be chi1<=1
    chi2 = 0.9  # Secondary spin. Must be chi2<=1
    M, m1, m2, S1, S2 = precession.get_fixed(q, chi1,
                                             chi2)  # Total-mass units M=1
    r = 200. * M  # Separation. Must be r>10M for PN to be valid
    J = 3.14  # Magnitude of J: Jmin<J<Jmax as given by J_lim
    xi = -0.01  # Effective spin: xi_low<xi<xi_up as given by xi_allowed
    Sb_min, Sb_max = precession.Sb_limits(xi, J, q, S1, S2, r)  # Limits in S
    tau = precession.precession_period(xi, J, q, S1, S2,
                                       r)  # Precessional period
    d = 2000  # Size of the statistical sample

    precession.make_temp()  # Create store directory, if necessary
    filename = precession.storedir + "/phase_resampling.dat"  # Output file name
    if not os.path.isfile(filename):  # Compute and store data if not present
        out = open(filename, "w")
        out.write("# q chi1 chi2 r J xi d\n")  # Write header
        out.write("# " +
                  ' '.join([str(x)
                            for x in (q, chi1, chi2, r, J, xi, d)]) + "\n")

        # S and t values for the S(t) plot
        S_vals = numpy.linspace(Sb_min, Sb_max, d)
        t_vals = numpy.array([
            abs(
                precession.t_of_S(Sb_min, S, Sb_min, Sb_max, xi, J, q, S1, S2,
                                  r)) for S in S_vals
        ])
        # Sample values of S from |dt/dS|. Distribution should be flat in t.
        S_sample = numpy.array(
            [precession.samplingS(xi, J, q, S1, S2, r) for i in range(d)])
        t_sample = numpy.array([
            abs(
                precession.t_of_S(Sb_min, S, Sb_min, Sb_max, xi, J, q, S1, S2,
                                  r)) for S in S_sample
        ])
        # Continuous distributions (normalized)
        S_distr = numpy.array([
            2. * abs(precession.dtdS(S, xi, J, q, S1, S2, r) / tau)
            for S in S_vals
        ])
        t_distr = numpy.array([2. / tau for t in t_vals])

        out.write("# S_vals t_vals S_sample t_sample S_distr t_distr\n")
        for Sv, tv, Ss, ts, Sd, td in zip(S_vals, t_vals, S_sample, t_sample,
                                          S_distr, t_distr):
            out.write(' '.join([str(x)
                                for x in (Sv, tv, Ss, ts, Sd, td)]) + "\n")
        out.close()
    else:  # Read
        S_vals, t_vals, S_sample, t_sample, S_distr, t_distr = numpy.loadtxt(
            filename, unpack=True)

    # Rescale all time values by 10^-6, for nicer plotting
    tau *= 1e-6
    t_vals *= 1e-6
    t_sample *= 1e-6
    t_distr /= 1e-6

    ax_tS.plot(S_vals, t_vals, c='blue', lw=2)  # S(t) curve
    ax_td.plot(t_distr, t_vals, lw=2., c='red')  # Continous distribution P(t)
    ax_Sd.plot(S_vals, S_distr, lw=2., c='red')  # Continous distribution P(S)
    ax_td.hist(t_sample,
               bins=60,
               range=(0, tau / 2.),
               normed=True,
               histtype='stepfilled',
               color="blue",
               alpha=0.4,
               orientation="horizontal")  # Histogram P(t)
    ax_Sd.hist(S_sample,
               bins=60,
               range=(Sb_min, Sb_max),
               normed=True,
               histtype='stepfilled',
               color="blue",
               alpha=0.4)  # Histogram P(S)

    # Options for nice plotting
    ax_tS.set_xlim(Sb_min, Sb_max)
    ax_tS.set_ylim(0, tau / 2.)
    ax_tS.set_xlabel("$S/M^2$")
    ax_tS.set_ylabel("$t/(10^6 M)$")
    ax_td.set_xlim(0, 0.5)
    ax_td.set_ylim(0, tau / 2.)
    ax_td.set_xlabel("$P(t)$")
    ax_td.set_yticklabels([])
    ax_Sd.set_xlim(Sb_min, Sb_max)
    ax_Sd.set_ylim(0, 20)
    ax_Sd.set_xticklabels([])
    ax_Sd.set_ylabel("$P(S)$")

    fig.savefig("phase_resampling.pdf", bbox_inches='tight')  # Save pdf file