コード例 #1
0
ファイル: Midas.py プロジェクト: amne51ac/Midas
 def __precess(self, ra0, dec0, equinox1, equinox2, doprint=False, fk4=False, radian=False):
     scal = True
     if isinstance(ra0, ndarray):
         ra = ra0.copy()
         dec = dec0.copy()
         scal = False
     else:
         ra = array([ra0])
         dec = array([dec0])
     npts = ra.size
 
     if not radian:
         ra_rad = deg2rad(ra)     # Convert to double precision if not already
         dec_rad = deg2rad(dec)
     else:
         ra_rad = ra
         dec_rad = dec
 
     a = cos(dec_rad)
 
     x = zeros((npts, 3))
     x[:, 0] = a * np.cos(ra_rad)
     x[:, 1] = a * np.sin(ra_rad)
     x[:, 2] = np.sin(dec_rad)
 
     # Use PREMAT function to get precession matrix from Equinox1 to Equinox2
 
     r = premat(equinox1, equinox2, fk4=fk4)
 
     x2 = transpose(dot(transpose(r), transpose(x)))      # rotate to get
     # output direction cosines
 
     ra_rad = zeros(npts) + arctan2(x2[:, 1], x2[:, 0])
     dec_rad = zeros(npts) + arcsin(x2[:, 2])
 
     if not radian:
         ra = rad2deg(ra_rad)
         ra = ra + (ra < 0.) * 360.e0            # RA between 0 and 360 degrees
         dec = rad2deg(dec_rad)
     else:
         ra = ra_rad
         dec = dec_rad
         ra = ra + (ra < 0.) * 2.0e0 * pi
 
     if doprint:
         print 'Equinox (%.2f): %f,%f' % (equinox2, ra, dec)
     if scal:
         ra, dec = ra[0], dec[0]
     return ra, dec
コード例 #2
0
ファイル: precess.py プロジェクト: richardgmcmahon/astrolibpy
def precess(ra0, dec0, equinox1, equinox2, doprint=False, fk4=False, radian=False):
   """
    NAME:
         PRECESS
    PURPOSE:
         Precess coordinates from EQUINOX1 to EQUINOX2.
    EXPLANATION:
         For interactive display, one can use the procedure ASTRO which calls
         PRECESS or use the /PRINT keyword.   The default (RA,DEC) system is
         FK5 based on epoch J2000.0 but FK4 based on B1950.0 is available via
         the /FK4 keyword.
   
         Use BPRECESS and JPRECESS to convert between FK4 and FK5 systems
    CALLING SEQUENCE:
         PRECESS, ra, dec, [ equinox1, equinox2, /PRINT, /FK4, /RADIAN ]
   
    INPUT - OUTPUT:
         RA - Input right ascension (scalar or vector) in DEGREES, unless the
                 /RADIAN keyword is set
         DEC - Input declination in DEGREES (scalar or vector), unless the
                 /RADIAN keyword is set
   
         The input RA and DEC are modified by PRECESS to give the
         values after precession.
   
    OPTIONAL INPUTS:
         EQUINOX1 - Original equinox of coordinates, numeric scalar.  If
                  omitted, then PRECESS will query for EQUINOX1 and EQUINOX2.
         EQUINOX2 - Equinox of precessed coordinates.
   
    OPTIONAL INPUT KEYWORDS:
         /PRINT - If this keyword is set and non-zero, then the precessed
                  coordinates are displayed at the terminal.    Cannot be used
                  with the /RADIAN keyword
         /FK4   - If this keyword is set and non-zero, the FK4 (B1950.0) system
                  will be used otherwise FK5 (J2000.0) will be used instead.
         /RADIAN - If this keyword is set and non-zero, then the input and
                  output RA and DEC vectors are in radians rather than degrees
   
    RESTRICTIONS:
          Accuracy of precession decreases for declination values near 90
          degrees.  PRECESS should not be used more than 2.5 centuries from
          2000 on the FK5 system (1950.0 on the FK4 system).
   
    EXAMPLES:
          (1) The Pole Star has J2000.0 coordinates (2h, 31m, 46.3s,
                  89d 15' 50.6"); compute its coordinates at J1985.0
   
          IDL> precess, ten(2,31,46.3)*15, ten(89,15,50.6), 2000, 1985, /PRINT
   
                  ====> 2h 16m 22.73s, 89d 11' 47.3"
   
          (2) Precess the B1950 coordinates of Eps Ind (RA = 21h 59m,33.053s,
          DEC = (-56d, 59', 33.053") to equinox B1975.
   
          IDL> ra = ten(21, 59, 33.053)*15
          IDL> dec = ten(-56, 59, 33.053)
          IDL> precess, ra, dec ,1950, 1975, /fk4
   
    PROCEDURE:
          Algorithm from Computational Spherical Astronomy by Taff (1983),
          p. 24. (FK4). FK5 constants from "Astronomical Almanac Explanatory
          Supplement 1992, page 104 Table 3.211.1.
   
    PROCEDURE CALLED:
          Function PREMAT - computes precession matrix
   
    REVISION HISTORY
          Written, Wayne Landsman, STI Corporation  August 1986
          Correct negative output RA values   February 1989
          Added /PRINT keyword      W. Landsman   November, 1991
          Provided FK5 (J2000.0)  I. Freedman   January 1994
          Precession Matrix computation now in PREMAT   W. Landsman June 1994
          Added /RADIAN keyword                         W. Landsman June 1997
          Converted to IDL V5.0   W. Landsman   September 1997
          Correct negative output RA values when /RADIAN used    March 1999
          Work for arrays, not just vectors  W. Landsman    September 2003
          Convert to Python 			Sergey Koposov	July 2010
   """
   scal = True
   if isinstance(ra0, ndarray):
      ra = ra0.copy()  
      dec = dec0.copy()
      scal = False
   else:
      ra=array([ra0])
      dec=array([dec0])
   npts = ra.size 
   
   if not radian:   
      ra_rad = deg2rad(ra)     #Convert to double precision if not already
      dec_rad = deg2rad(dec)
   else:   
      ra_rad = ra
      dec_rad = dec
   
   a = cos(dec_rad)
   
   x = zeros((npts, 3))
   x[:,0] = a * cos(ra_rad)
   x[:,1] = a * sin(ra_rad)
   x[:,2] = sin(dec_rad)
   
   # Use PREMAT function to get precession matrix from Equinox1 to Equinox2
   
   r = premat(equinox1, equinox2, fk4=fk4)
   
   x2 = transpose(dot(transpose(r), transpose(x)))      #rotate to get output direction cosines
   
   ra_rad = zeros(npts) + arctan2(x2[:,1], x2[:,0])
   dec_rad = zeros(npts) + arcsin(x2[:,2])
   
   if not radian:   
      ra = rad2deg(ra_rad)
      ra = ra + (ra < 0.) * 360.e0            #RA between 0 and 360 degrees
      dec = rad2deg(dec_rad)
   else:   
      ra = ra_rad
      dec = dec_rad
      ra = ra + (ra < 0.) * 2.0e0 * pi
   
   if doprint:   
      print( 'Equinox (%.2f): %f,%f' % (equinox2, ra, dec))
   if scal:
      ra, dec = ra[0], dec[0]
   return ra, dec
コード例 #3
0
def baryvel(dje, deq=0):
    """
    NAME:
          BARYVEL
    PURPOSE:
          Calculates heliocentric and barycentric velocity components of Earth.
   
    EXPLANATION:
          BARYVEL takes into account the Earth-Moon motion, and is useful for
          radial velocity work to an accuracy of  ~1 m/s.
   
    CALLING SEQUENCE:
          dvel_hel, dvel_bary = baryvel(dje, deq)
   
    INPUTS:
          DJE - (scalar) Julian ephemeris date.
          DEQ - (scalar) epoch of mean equinox of dvelh and dvelb. If deq=0
                  then deq is assumed to be equal to dje.
    OUTPUTS:
          DVELH: (vector(3)) heliocentric velocity component. in km/s
          DVELB: (vector(3)) barycentric velocity component. in km/s
   
          The 3-vectors DVELH and DVELB are given in a right-handed coordinate
          system with the +X axis toward the Vernal Equinox, and +Z axis
          toward the celestial pole.
   
    OPTIONAL KEYWORD SET:
          JPL - if /JPL set, then BARYVEL will call the procedure JPLEPHINTERP
                to compute the Earth velocity using the full JPL ephemeris.
                The JPL ephemeris FITS file JPLEPH.405 must exist in either the
                current directory, or in the directory specified by the
                environment variable ASTRO_DATA.   Alternatively, the JPL keyword
                can be set to the full path and name of the ephemeris file.
                A copy of the JPL ephemeris FITS file is available in
                    http://idlastro.gsfc.nasa.gov/ftp/data/
    PROCEDURES CALLED:
          Function PREMAT() -- computes precession matrix
          JPLEPHREAD, JPLEPHINTERP, TDB2TDT - if /JPL keyword is set
    NOTES:
          Algorithm taken from FORTRAN program of Stumpff (1980, A&A Suppl, 41,1)
          Stumpf claimed an accuracy of 42 cm/s for the velocity.    A
          comparison with the JPL FORTRAN planetary ephemeris program PLEPH
          found agreement to within about 65 cm/s between 1986 and 1994
   
          If /JPL is set (using JPLEPH.405 ephemeris file) then velocities are
          given in the ICRS system; otherwise in the FK4 system.
    EXAMPLE:
          Compute the radial velocity of the Earth toward Altair on 15-Feb-1994
             using both the original Stumpf algorithm and the JPL ephemeris
   
          IDL> jdcnv, 1994, 2, 15, 0, jd          ;==> JD = 2449398.5
          IDL> baryvel, jd, 2000, vh, vb          ;Original algorithm
                  ==> vh = [-17.07243, -22.81121, -9.889315]  ;Heliocentric km/s
                  ==> vb = [-17.08083, -22.80471, -9.886582]  ;Barycentric km/s
          IDL> baryvel, jd, 2000, vh, vb, /jpl   ;JPL ephemeris
                  ==> vh = [-17.07236, -22.81126, -9.889419]  ;Heliocentric km/s
                  ==> vb = [-17.08083, -22.80484, -9.886409]  ;Barycentric km/s
   
          IDL> ra = ten(19,50,46.77)*15/!RADEG    ;RA  in radians
          IDL> dec = ten(08,52,3.5)/!RADEG        ;Dec in radians
          IDL> v = vb[0]*cos(dec)*cos(ra) + $   ;Project velocity toward star
                  vb[1]*cos(dec)*sin(ra) + vb[2]*sin(dec)
   
    REVISION HISTORY:
          Jeff Valenti,  U.C. Berkeley    Translated BARVEL.FOR to IDL.
          W. Landsman, Cleaned up program sent by Chris McCarthy (SfSU) June 1994
          Converted to IDL V5.0   W. Landsman   September 1997
          Added /JPL keyword  W. Landsman   July 2001
          Documentation update W. Landsman Dec 2005
          Converted to Python S. Koposov 2009-2010
   """

    #Define constants
    dc2pi = 2 * pi
    cc2pi = 2 * pi
    dc1 = 1.0e0
    dcto = 2415020.0e0
    dcjul = 36525.0e0  #days in Julian year
    dcbes = 0.313e0
    dctrop = 365.24219572e0  #days in tropical year (...572 insig)
    dc1900 = 1900.0e0
    au = 1.4959787e8

    #Constants dcfel(i,k) of fast changing elements.
    dcfel = array([
        1.7400353e00, 6.2833195099091e02, 5.2796e-6, 6.2565836e00,
        6.2830194572674e02, -2.6180e-6, 4.7199666e00, 8.3997091449254e03,
        -1.9780e-5, 1.9636505e-1, 8.4334662911720e03, -5.6044e-5, 4.1547339e00,
        5.2993466764997e01, 5.8845e-6, 4.6524223e00, 2.1354275911213e01,
        5.6797e-6, 4.2620486e00, 7.5025342197656e00, 5.5317e-6, 1.4740694e00,
        3.8377331909193e00, 5.6093e-6
    ])
    dcfel = reshape(dcfel, (8, 3))

    #constants dceps and ccsel(i,k) of slowly changing elements.
    dceps = array([4.093198e-1, -2.271110e-4, -2.860401e-8])
    ccsel = array([
        1.675104e-2, -4.179579e-5, -1.260516e-7, 2.220221e-1, 2.809917e-2,
        1.852532e-5, 1.589963e00, 3.418075e-2, 1.430200e-5, 2.994089e00,
        2.590824e-2, 4.155840e-6, 8.155457e-1, 2.486352e-2, 6.836840e-6,
        1.735614e00, 1.763719e-2, 6.370440e-6, 1.968564e00, 1.524020e-2,
        -2.517152e-6, 1.282417e00, 8.703393e-3, 2.289292e-5, 2.280820e00,
        1.918010e-2, 4.484520e-6, 4.833473e-2, 1.641773e-4, -4.654200e-7,
        5.589232e-2, -3.455092e-4, -7.388560e-7, 4.634443e-2, -2.658234e-5,
        7.757000e-8, 8.997041e-3, 6.329728e-6, -1.939256e-9, 2.284178e-2,
        -9.941590e-5, 6.787400e-8, 4.350267e-2, -6.839749e-5, -2.714956e-7,
        1.348204e-2, 1.091504e-5, 6.903760e-7, 3.106570e-2, -1.665665e-4,
        -1.590188e-7
    ])
    ccsel = reshape(ccsel, (17, 3))

    #Constants of the arguments of the short-period perturbations.
    dcargs = array([
        5.0974222e0, -7.8604195454652e2, 3.9584962e0, -5.7533848094674e2,
        1.6338070e0, -1.1506769618935e3, 2.5487111e0, -3.9302097727326e2,
        4.9255514e0, -5.8849265665348e2, 1.3363463e0, -5.5076098609303e2,
        1.6072053e0, -5.2237501616674e2, 1.3629480e0, -1.1790629318198e3,
        5.5657014e0, -1.0977134971135e3, 5.0708205e0, -1.5774000881978e2,
        3.9318944e0, 5.2963464780000e1, 4.8989497e0, 3.9809289073258e1,
        1.3097446e0, 7.7540959633708e1, 3.5147141e0, 7.9618578146517e1,
        3.5413158e0, -5.4868336758022e2
    ])
    dcargs = reshape(dcargs, (15, 2))

    #Amplitudes ccamps(n,k) of the short-period perturbations.
    ccamps = array([
        -2.279594e-5, 1.407414e-5, 8.273188e-6, 1.340565e-5, -2.490817e-7,
        -3.494537e-5, 2.860401e-7, 1.289448e-7, 1.627237e-5, -1.823138e-7,
        6.593466e-7, 1.322572e-5, 9.258695e-6, -4.674248e-7, -3.646275e-7,
        1.140767e-5, -2.049792e-5, -4.747930e-6, -2.638763e-6, -1.245408e-7,
        9.516893e-6, -2.748894e-6, -1.319381e-6, -4.549908e-6, -1.864821e-7,
        7.310990e-6, -1.924710e-6, -8.772849e-7, -3.334143e-6, -1.745256e-7,
        -2.603449e-6, 7.359472e-6, 3.168357e-6, 1.119056e-6, -1.655307e-7,
        -3.228859e-6, 1.308997e-7, 1.013137e-7, 2.403899e-6, -3.736225e-7,
        3.442177e-7, 2.671323e-6, 1.832858e-6, -2.394688e-7, -3.478444e-7,
        8.702406e-6, -8.421214e-6, -1.372341e-6, -1.455234e-6, -4.998479e-8,
        -1.488378e-6, -1.251789e-5, 5.226868e-7, -2.049301e-7, 0.e0,
        -8.043059e-6, -2.991300e-6, 1.473654e-7, -3.154542e-7, 0.e0,
        3.699128e-6, -3.316126e-6, 2.901257e-7, 3.407826e-7, 0.e0, 2.550120e-6,
        -1.241123e-6, 9.901116e-8, 2.210482e-7, 0.e0, -6.351059e-7,
        2.341650e-6, 1.061492e-6, 2.878231e-7, 0.e0
    ])
    ccamps = reshape(ccamps, (15, 5))

    #Constants csec3 and ccsec(n,k) of the secular perturbations in longitude.
    ccsec3 = -7.757020e-8
    ccsec = array([
        1.289600e-6, 5.550147e-1, 2.076942e00, 3.102810e-5, 4.035027e00,
        3.525565e-1, 9.124190e-6, 9.990265e-1, 2.622706e00, 9.793240e-7,
        5.508259e00, 1.559103e01
    ])
    ccsec = reshape(ccsec, (4, 3))

    #Sidereal rates.
    dcsld = 1.990987e-7  #sidereal rate in longitude
    ccsgd = 1.990969e-7  #sidereal rate in mean anomaly

    #Constants used in the calculation of the lunar contribution.
    cckm = 3.122140e-5
    ccmld = 2.661699e-6
    ccfdi = 2.399485e-7

    #Constants dcargm(i,k) of the arguments of the perturbations of the motion
    # of the moon.
    dcargm = array([
        5.1679830e0, 8.3286911095275e3, 5.4913150e0, -7.2140632838100e3,
        5.9598530e0, 1.5542754389685e4
    ])
    dcargm = reshape(dcargm, (3, 2))

    #Amplitudes ccampm(n,k) of the perturbations of the moon.
    ccampm = array([
        1.097594e-1, 2.896773e-7, 5.450474e-2, 1.438491e-7, -2.223581e-2,
        5.083103e-8, 1.002548e-2, -2.291823e-8, 1.148966e-2, 5.658888e-8,
        8.249439e-3, 4.063015e-8
    ])
    ccampm = reshape(ccampm, (3, 4))

    #ccpamv(k)=a*m*dl,dt (planets), dc1mme=1-mass(earth+moon)
    ccpamv = array([8.326827e-11, 1.843484e-11, 1.988712e-12, 1.881276e-12])
    dc1mme = 0.99999696e0

    #Time arguments.
    dt = (dje - dcto) / dcjul
    tvec = array([1e0, dt, dt * dt])

    #Values of all elements for the instant(aneous?) dje.
    temp = (transpose(dot(transpose(tvec), transpose(dcfel)))) % dc2pi
    dml = temp[0]
    forbel = temp[1:8]
    g = forbel[0]  #old fortran equivalence

    deps = (tvec * dceps).sum() % dc2pi
    sorbel = (transpose(dot(transpose(tvec), transpose(ccsel)))) % dc2pi
    e = sorbel[0]  #old fortran equivalence

    #Secular perturbations in longitude.
    dummy = cos(2.0)
    sn = sin((transpose(dot(transpose(tvec[0:2]), transpose(ccsec[:, 1:3])))) %
             cc2pi)

    #Periodic perturbations of the emb (earth-moon barycenter).
    pertl = (ccsec[:, 0] * sn).sum() + dt * ccsec3 * sn[2]
    pertld = 0.0
    pertr = 0.0
    pertrd = 0.0
    for k in range(0, 15):
        a = (dcargs[k, 0] + dt * dcargs[k, 1]) % dc2pi
        cosa = cos(a)
        sina = sin(a)
        pertl = pertl + ccamps[k, 0] * cosa + ccamps[k, 1] * sina
        pertr = pertr + ccamps[k, 2] * cosa + ccamps[k, 3] * sina
        if k < 11:
            pertld = pertld + (ccamps[k, 1] * cosa -
                               ccamps[k, 0] * sina) * ccamps[k, 4]
            pertrd = pertrd + (ccamps[k, 3] * cosa -
                               ccamps[k, 2] * sina) * ccamps[k, 4]

    #Elliptic part of the motion of the emb.
    phi = (e * e / 4e0) * (((8e0 / e) - e) * sin(g) + 5 * sin(2 * g) +
                           (13 / 3e0) * e * sin(3 * g))
    f = g + phi
    sinf = sin(f)
    cosf = cos(f)
    dpsi = (dc1 - e * e) / (dc1 + e * cosf)
    phid = 2 * e * ccsgd * ((1 + 1.5 * e * e) * cosf + e *
                            (1.25 - 0.5 * sinf * sinf))
    psid = ccsgd * e * sinf / sqrt(dc1 - e * e)

    #Perturbed heliocentric motion of the emb.
    d1pdro = dc1 + pertr
    drd = d1pdro * (psid + dpsi * pertrd)
    drld = d1pdro * dpsi * (dcsld + phid + pertld)
    dtl = (dml + phi + pertl) % dc2pi
    dsinls = sin(dtl)
    dcosls = cos(dtl)
    dxhd = drd * dcosls - drld * dsinls
    dyhd = drd * dsinls + drld * dcosls

    #Influence of eccentricity, evection and variation on the geocentric
    # motion of the moon.
    pertl = 0.0
    pertld = 0.0
    pertp = 0.0
    pertpd = 0.0
    for k in range(0, 3):
        a = (dcargm[k, 0] + dt * dcargm[k, 1]) % dc2pi
        sina = sin(a)
        cosa = cos(a)
        pertl = pertl + ccampm[k, 0] * sina
        pertld = pertld + ccampm[k, 1] * cosa
        pertp = pertp + ccampm[k, 2] * cosa
        pertpd = pertpd - ccampm[k, 3] * sina

    #Heliocentric motion of the earth.
    tl = forbel[1] + pertl
    sinlm = sin(tl)
    coslm = cos(tl)
    sigma = cckm / (1.0 + pertp)
    a = sigma * (ccmld + pertld)
    b = sigma * pertpd
    dxhd = dxhd + a * sinlm + b * coslm
    dyhd = dyhd - a * coslm + b * sinlm
    dzhd = -sigma * ccfdi * cos(forbel[2])

    #Barycentric motion of the earth.
    dxbd = dxhd * dc1mme
    dybd = dyhd * dc1mme
    dzbd = dzhd * dc1mme
    for k in range(0, 4):
        plon = forbel[k + 3]
        pomg = sorbel[k + 1]
        pecc = sorbel[k + 9]
        tl = (plon + 2.0 * pecc * sin(plon - pomg)) % cc2pi
        dxbd = dxbd + ccpamv[k] * (sin(tl) + pecc * sin(pomg))
        dybd = dybd - ccpamv[k] * (cos(tl) + pecc * cos(pomg))
        dzbd = dzbd - ccpamv[k] * sorbel[k + 13] * cos(plon - sorbel[k + 5])

    #Transition to mean equator of date.
    dcosep = cos(deps)
    dsinep = sin(deps)
    dyahd = dcosep * dyhd - dsinep * dzhd
    dzahd = dsinep * dyhd + dcosep * dzhd
    dyabd = dcosep * dybd - dsinep * dzbd
    dzabd = dsinep * dybd + dcosep * dzbd

    #Epoch of mean equinox (deq) of zero implies that we should use
    # Julian ephemeris date (dje) as epoch of mean equinox.
    if deq == 0:
        dvelh = au * (array([dxhd, dyahd, dzahd]))
        dvelb = au * (array([dxbd, dyabd, dzabd]))
        return (dvelh, dvelb)

    #General precession from epoch dje to deq.
    deqdat = (dje - dcto - dcbes) / dctrop + dc1900
    prema = premat(deqdat, deq, fk4=True)

    dvelh = au * (transpose(
        dot(transpose(prema), transpose(array([dxhd, dyahd, dzahd])))))
    dvelb = au * (transpose(
        dot(transpose(prema), transpose(array([dxbd, dyabd, dzabd])))))

    return (dvelh, dvelb)
コード例 #4
0
def precess(ra0,
            dec0,
            equinox1,
            equinox2,
            doprint=False,
            fk4=False,
            radian=False):
    """
    NAME:
         PRECESS
    PURPOSE:
         Precess coordinates from EQUINOX1 to EQUINOX2.
    EXPLANATION:
         For interactive display, one can use the procedure ASTRO which calls
         PRECESS or use the /PRINT keyword.   The default (RA,DEC) system is
         FK5 based on epoch J2000.0 but FK4 based on B1950.0 is available via
         the /FK4 keyword.
   
         Use BPRECESS and JPRECESS to convert between FK4 and FK5 systems
    CALLING SEQUENCE:
         PRECESS, ra, dec, [ equinox1, equinox2, /PRINT, /FK4, /RADIAN ]
   
    INPUT - OUTPUT:
         RA - Input right ascension (scalar or vector) in DEGREES, unless the
                 /RADIAN keyword is set
         DEC - Input declination in DEGREES (scalar or vector), unless the
                 /RADIAN keyword is set
   
         The input RA and DEC are modified by PRECESS to give the
         values after precession.
   
    OPTIONAL INPUTS:
         EQUINOX1 - Original equinox of coordinates, numeric scalar.  If
                  omitted, then PRECESS will query for EQUINOX1 and EQUINOX2.
         EQUINOX2 - Equinox of precessed coordinates.
   
    OPTIONAL INPUT KEYWORDS:
         /PRINT - If this keyword is set and non-zero, then the precessed
                  coordinates are displayed at the terminal.    Cannot be used
                  with the /RADIAN keyword
         /FK4   - If this keyword is set and non-zero, the FK4 (B1950.0) system
                  will be used otherwise FK5 (J2000.0) will be used instead.
         /RADIAN - If this keyword is set and non-zero, then the input and
                  output RA and DEC vectors are in radians rather than degrees
   
    RESTRICTIONS:
          Accuracy of precession decreases for declination values near 90
          degrees.  PRECESS should not be used more than 2.5 centuries from
          2000 on the FK5 system (1950.0 on the FK4 system).
   
    EXAMPLES:
          (1) The Pole Star has J2000.0 coordinates (2h, 31m, 46.3s,
                  89d 15' 50.6"); compute its coordinates at J1985.0
   
          IDL> precess, ten(2,31,46.3)*15, ten(89,15,50.6), 2000, 1985, /PRINT
   
                  ====> 2h 16m 22.73s, 89d 11' 47.3"
   
          (2) Precess the B1950 coordinates of Eps Ind (RA = 21h 59m,33.053s,
          DEC = (-56d, 59', 33.053") to equinox B1975.
   
          IDL> ra = ten(21, 59, 33.053)*15
          IDL> dec = ten(-56, 59, 33.053)
          IDL> precess, ra, dec ,1950, 1975, /fk4
   
    PROCEDURE:
          Algorithm from Computational Spherical Astronomy by Taff (1983),
          p. 24. (FK4). FK5 constants from "Astronomical Almanac Explanatory
          Supplement 1992, page 104 Table 3.211.1.
   
    PROCEDURE CALLED:
          Function PREMAT - computes precession matrix
   
    REVISION HISTORY
          Written, Wayne Landsman, STI Corporation  August 1986
          Correct negative output RA values   February 1989
          Added /PRINT keyword      W. Landsman   November, 1991
          Provided FK5 (J2000.0)  I. Freedman   January 1994
          Precession Matrix computation now in PREMAT   W. Landsman June 1994
          Added /RADIAN keyword                         W. Landsman June 1997
          Converted to IDL V5.0   W. Landsman   September 1997
          Correct negative output RA values when /RADIAN used    March 1999
          Work for arrays, not just vectors  W. Landsman    September 2003
          Convert to Python 			Sergey Koposov	July 2010
   """
    scal = True
    if isinstance(ra0, ndarray):
        ra = ra0.copy()
        dec = dec0.copy()
        scal = False
    else:
        ra = array([ra0])
        dec = array([dec0])
    npts = ra.size

    if not radian:
        ra_rad = deg2rad(ra)  #Convert to double precision if not already
        dec_rad = deg2rad(dec)
    else:
        ra_rad = ra
        dec_rad = dec

    a = cos(dec_rad)

    x = zeros((npts, 3))
    x[:, 0] = a * cos(ra_rad)
    x[:, 1] = a * sin(ra_rad)
    x[:, 2] = sin(dec_rad)

    # Use PREMAT function to get precession matrix from Equinox1 to Equinox2

    r = premat(equinox1, equinox2, fk4=fk4)

    x2 = transpose(dot(transpose(r),
                       transpose(x)))  #rotate to get output direction cosines

    ra_rad = zeros(npts) + arctan2(x2[:, 1], x2[:, 0])
    dec_rad = zeros(npts) + arcsin(x2[:, 2])

    if not radian:
        ra = rad2deg(ra_rad)
        ra = ra + (ra < 0.) * 360.e0  #RA between 0 and 360 degrees
        dec = rad2deg(dec_rad)
    else:
        ra = ra_rad
        dec = dec_rad
        ra = ra + (ra < 0.) * 2.0e0 * pi

    if doprint:
        print 'Equinox (%.2f): %f,%f' % (equinox2, ra, dec)
    if scal:
        ra, dec = ra[0], dec[0]
    return ra, dec
コード例 #5
0
ファイル: precess.py プロジェクト: aarontran/ay121
def precess(ra, dec, equinox1, equinox2, FK4 = None,radian=False):
    """
    NAME:
       PRECESS
    PURPOSE:
       Precess coordinates from EQUINOX1 to EQUINOX2.  
    EXPLANATION:
       For interactive display, one can use the procedure ASTRO which calls 
       PRECESS or use the /PRINT keyword.   The default (RA,DEC) system is 
       FK5 based on epoch J2000.0 but FK4 based on B1950.0 is available via 
       the /FK4 keyword.

    CALLING SEQUENCE:
       PRECESS, ra, dec, [ equinox1, equinox2, /PRINT, /FK4, /RADIAN ]

    INPUT - OUTPUT:
       RA - Input right ascension (scalar or vector) in DEGREES, unless the 
               /RADIAN keyword is set
       DEC - Input declination in DEGREES (scalar or vector), unless the 
               /RADIAN keyword is set
               
       The input RA and DEC are modified by PRECESS to give the 
       values after precession.

    OPTIONAL INPUTS:
       EQUINOX1 - Original equinox of coordinates, numeric scalar.  If 
               omitted, then PRECESS will query for EQUINOX1 and EQUINOX2.
       EQUINOX2 - Equinox of precessed coordinates.

    OPTIONAL INPUT KEYWORDS:
       FK4   - If this keyword is set, the FK4 (B1950.0) system
               will be used otherwise FK5 (J2000.0) will be used instead.
       RADIAN - If this keyword is set and non-zero, then the input and 
               output RA and DEC vectors are in radians rather than degrees

    RESTRICTIONS:
       Accuracy of precession decreases for declination values near 90 
       degrees.  PRECESS should not be used more than 2.5 centuries from
       2000 on the FK5 system (1950.0 on the FK4 system).

    EXAMPLES:
       (1) The Pole Star has J2000.0 coordinates (2h, 31m, 46.3s, 
               89d 15' 50.6") compute its coordinates at J1985.0
       In [1]: ra, dec = precess(ten(2,31,46.3)*15, ten(89,15,50.6), 2000, 1985)

               ====> 2h 16m 22.73s, 89d 11' 47.3"

       (2) Precess the B1950 coordinates of Eps Ind (RA = 21h 59m,33.053s,
       DEC = (-56d, 59', 33.053") to equinox B1975.

       In [2]: ra = ten(21, 59, 33.053)*15
       In [3]: dec = ten(-56, 59, 33.053)
       In [4]: ra,dec = precess(ra, dec ,1950, 1975, /fk4)

    PROCEDURE:
       Algorithm from Computational Spherical Astronomy by Taff (1983), 
       p. 24. (FK4). FK5 constants from "Astronomical Almanac Explanatory
       Supplement 1992, page 104 Table 3.211.1.

    PROCEDURE CALLED:
       Function PREMAT - computes precession matrix 

    REVISION HISTORY
       Written, Wayne Landsman, STI Corporation  August 1986
       Correct negative output RA values   February 1989
       Added /PRINT keyword      W. Landsman   November, 1991
       Provided FK5 (J2000.0)  I. Freedman   January 1994
       Precession Matrix computation now in PREMAT   W. Landsman June 1994
       Added /RADIAN keyword                         W. Landsman June 1997
       Converted to IDL V5.0   W. Landsman   September 1997
       Converted to Python                   April 2014
    """
    import numpy as np
    from premat import premat 
    deg_to_rad = np.pi/180.

    #Is RA a vector or scalar?
    try:
        npts = np.min( [len(ra), len(dec)] )
    except:
        npts = 1


    if not radian:
          ra_rad = ra*deg_to_rad    
          dec_rad = dec*deg_to_rad 
    else:
        ra_rad= float(ra) ; dec_rad = float(dec)
    
    sec_to_rad = deg_to_rad/3600

    a = np.cos(dec_rad)  
    x = np.zeros((3,npts))
    x[0,:] = a*np.cos(ra_rad)
    x[1,:] = a*np.sin(ra_rad)
    x[2,:] = np.sin(dec_rad)

    # Use PREMAT function to get precession matrix from Equinox1 to Equinox2
    r = premat(equinox1, equinox2, fk4 = FK4)
    x2 = np.dot(r,x)      #rotate to get output direction cosines

    ra_rad = np.arctan2(x2[1,:],x2[0,:])
    dec_rad = np.arcsin(x2[2,:])

    if not radian:
        ra = ra_rad/deg_to_rad
        ra = ra + (ra < 0.)*360.            #RA between 0 and 360 degrees
        dec = dec_rad/deg_to_rad
    else:
        ra = ra_rad ; dec = dec_rad

    
    return (ra, dec)
コード例 #6
0
ファイル: baryvel.py プロジェクト: amne51ac/Midas
def baryvel(dje, deq=0):
   """
    NAME:
          BARYVEL
    PURPOSE:
          Calculates heliocentric and barycentric velocity components of Earth.
   
    EXPLANATION:
          BARYVEL takes into account the Earth-Moon motion, and is useful for
          radial velocity work to an accuracy of  ~1 m/s.
   
    CALLING SEQUENCE:
          dvel_hel, dvel_bary = baryvel(dje, deq)
   
    INPUTS:
          DJE - (scalar) Julian ephemeris date.
          DEQ - (scalar) epoch of mean equinox of dvelh and dvelb. If deq=0
                  then deq is assumed to be equal to dje.
    OUTPUTS:
          DVELH: (vector(3)) heliocentric velocity component. in km/s
          DVELB: (vector(3)) barycentric velocity component. in km/s
   
          The 3-vectors DVELH and DVELB are given in a right-handed coordinate
          system with the +X axis toward the Vernal Equinox, and +Z axis
          toward the celestial pole.
   
    OPTIONAL KEYWORD SET:
          JPL - if /JPL set, then BARYVEL will call the procedure JPLEPHINTERP
                to compute the Earth velocity using the full JPL ephemeris.
                The JPL ephemeris FITS file JPLEPH.405 must exist in either the
                current directory, or in the directory specified by the
                environment variable ASTRO_DATA.   Alternatively, the JPL keyword
                can be set to the full path and name of the ephemeris file.
                A copy of the JPL ephemeris FITS file is available in
                    http://idlastro.gsfc.nasa.gov/ftp/data/
    PROCEDURES CALLED:
          Function PREMAT() -- computes precession matrix
          JPLEPHREAD, JPLEPHINTERP, TDB2TDT - if /JPL keyword is set
    NOTES:
          Algorithm taken from FORTRAN program of Stumpff (1980, A&A Suppl, 41,1)
          Stumpf claimed an accuracy of 42 cm/s for the velocity.    A
          comparison with the JPL FORTRAN planetary ephemeris program PLEPH
          found agreement to within about 65 cm/s between 1986 and 1994
   
          If /JPL is set (using JPLEPH.405 ephemeris file) then velocities are
          given in the ICRS system; otherwise in the FK4 system.
    EXAMPLE:
          Compute the radial velocity of the Earth toward Altair on 15-Feb-1994
             using both the original Stumpf algorithm and the JPL ephemeris
   
          IDL> jdcnv, 1994, 2, 15, 0, jd          ;==> JD = 2449398.5
          IDL> baryvel, jd, 2000, vh, vb          ;Original algorithm
                  ==> vh = [-17.07243, -22.81121, -9.889315]  ;Heliocentric km/s
                  ==> vb = [-17.08083, -22.80471, -9.886582]  ;Barycentric km/s
          IDL> baryvel, jd, 2000, vh, vb, /jpl   ;JPL ephemeris
                  ==> vh = [-17.07236, -22.81126, -9.889419]  ;Heliocentric km/s
                  ==> vb = [-17.08083, -22.80484, -9.886409]  ;Barycentric km/s
   
          IDL> ra = ten(19,50,46.77)*15/!RADEG    ;RA  in radians
          IDL> dec = ten(08,52,3.5)/!RADEG        ;Dec in radians
          IDL> v = vb[0]*cos(dec)*cos(ra) + $   ;Project velocity toward star
                  vb[1]*cos(dec)*sin(ra) + vb[2]*sin(dec)
   
    REVISION HISTORY:
          Jeff Valenti,  U.C. Berkeley    Translated BARVEL.FOR to IDL.
          W. Landsman, Cleaned up program sent by Chris McCarthy (SfSU) June 1994
          Converted to IDL V5.0   W. Landsman   September 1997
          Added /JPL keyword  W. Landsman   July 2001
          Documentation update W. Landsman Dec 2005
          Converted to Python S. Koposov 2009-2010
   """

   
   #Define constants
   dc2pi = 2 * pi
   cc2pi = 2 * pi
   dc1 = 1.0e0
   dcto = 2415020.0e0
   dcjul = 36525.0e0                     #days in Julian year
   dcbes = 0.313e0
   dctrop = 365.24219572e0               #days in tropical year (...572 insig)
   dc1900 = 1900.0e0
   au = 1.4959787e8
   
   #Constants dcfel(i,k) of fast changing elements.
   dcfel = array([1.7400353e00, 6.2833195099091e02, 5.2796e-6, 6.2565836e00, 6.2830194572674e02, -2.6180e-6, 4.7199666e00, 8.3997091449254e03, -1.9780e-5, 1.9636505e-1, 8.4334662911720e03, -5.6044e-5, 4.1547339e00, 5.2993466764997e01, 5.8845e-6, 4.6524223e00, 2.1354275911213e01, 5.6797e-6, 4.2620486e00, 7.5025342197656e00, 5.5317e-6, 1.4740694e00, 3.8377331909193e00, 5.6093e-6])
   dcfel = reshape(dcfel, (8, 3))
   
   #constants dceps and ccsel(i,k) of slowly changing elements.
   dceps = array([4.093198e-1, -2.271110e-4, -2.860401e-8])
   ccsel = array([1.675104e-2, -4.179579e-5, -1.260516e-7, 2.220221e-1, 2.809917e-2, 1.852532e-5, 1.589963e00, 3.418075e-2, 1.430200e-5, 2.994089e00, 2.590824e-2, 4.155840e-6, 8.155457e-1, 2.486352e-2, 6.836840e-6, 1.735614e00, 1.763719e-2, 6.370440e-6, 1.968564e00, 1.524020e-2, -2.517152e-6, 1.282417e00, 8.703393e-3, 2.289292e-5, 2.280820e00, 1.918010e-2, 4.484520e-6, 4.833473e-2, 1.641773e-4, -4.654200e-7, 5.589232e-2, -3.455092e-4, -7.388560e-7, 4.634443e-2, -2.658234e-5, 7.757000e-8, 8.997041e-3, 6.329728e-6, -1.939256e-9, 2.284178e-2, -9.941590e-5, 6.787400e-8, 4.350267e-2, -6.839749e-5, -2.714956e-7, 1.348204e-2, 1.091504e-5, 6.903760e-7, 3.106570e-2, -1.665665e-4, -1.590188e-7])
   ccsel = reshape(ccsel, (17, 3))
   
   #Constants of the arguments of the short-period perturbations.
   dcargs = array([5.0974222e0, -7.8604195454652e2, 3.9584962e0, -5.7533848094674e2, 1.6338070e0, -1.1506769618935e3, 2.5487111e0, -3.9302097727326e2, 4.9255514e0, -5.8849265665348e2, 1.3363463e0, -5.5076098609303e2, 1.6072053e0, -5.2237501616674e2, 1.3629480e0, -1.1790629318198e3, 5.5657014e0, -1.0977134971135e3, 5.0708205e0, -1.5774000881978e2, 3.9318944e0, 5.2963464780000e1, 4.8989497e0, 3.9809289073258e1, 1.3097446e0, 7.7540959633708e1, 3.5147141e0, 7.9618578146517e1, 3.5413158e0, -5.4868336758022e2])
   dcargs = reshape(dcargs, (15, 2))
   
   #Amplitudes ccamps(n,k) of the short-period perturbations.
   ccamps = array([-2.279594e-5, 1.407414e-5, 8.273188e-6, 1.340565e-5, -2.490817e-7, -3.494537e-5, 2.860401e-7, 1.289448e-7, 1.627237e-5, -1.823138e-7, 6.593466e-7, 1.322572e-5, 9.258695e-6, -4.674248e-7, -3.646275e-7, 1.140767e-5, -2.049792e-5, -4.747930e-6, -2.638763e-6, -1.245408e-7, 9.516893e-6, -2.748894e-6, -1.319381e-6, -4.549908e-6, -1.864821e-7, 7.310990e-6, -1.924710e-6, -8.772849e-7, -3.334143e-6, -1.745256e-7, -2.603449e-6, 7.359472e-6, 3.168357e-6, 1.119056e-6, -1.655307e-7, -3.228859e-6, 1.308997e-7, 1.013137e-7, 2.403899e-6, -3.736225e-7, 3.442177e-7, 2.671323e-6, 1.832858e-6, -2.394688e-7, -3.478444e-7, 8.702406e-6, -8.421214e-6, -1.372341e-6, -1.455234e-6, -4.998479e-8, -1.488378e-6, -1.251789e-5, 5.226868e-7, -2.049301e-7, 0.e0, -8.043059e-6, -2.991300e-6, 1.473654e-7, -3.154542e-7, 0.e0, 3.699128e-6, -3.316126e-6, 2.901257e-7, 3.407826e-7, 0.e0, 2.550120e-6, -1.241123e-6, 9.901116e-8, 2.210482e-7, 0.e0, -6.351059e-7, 2.341650e-6, 1.061492e-6, 2.878231e-7, 0.e0])
   ccamps = reshape(ccamps, (15, 5))
   
   #Constants csec3 and ccsec(n,k) of the secular perturbations in longitude.
   ccsec3 = -7.757020e-8
   ccsec = array([1.289600e-6, 5.550147e-1, 2.076942e00, 3.102810e-5, 4.035027e00, 3.525565e-1, 9.124190e-6, 9.990265e-1, 2.622706e00, 9.793240e-7, 5.508259e00, 1.559103e01])
   ccsec = reshape(ccsec, (4, 3))
   
   #Sidereal rates.
   dcsld = 1.990987e-7                   #sidereal rate in longitude
   ccsgd = 1.990969e-7                   #sidereal rate in mean anomaly
   
   #Constants used in the calculation of the lunar contribution.
   cckm = 3.122140e-5
   ccmld = 2.661699e-6
   ccfdi = 2.399485e-7
   
   #Constants dcargm(i,k) of the arguments of the perturbations of the motion
   # of the moon.
   dcargm = array([5.1679830e0, 8.3286911095275e3, 5.4913150e0, -7.2140632838100e3, 5.9598530e0, 1.5542754389685e4])
   dcargm = reshape(dcargm, (3, 2))
   
   #Amplitudes ccampm(n,k) of the perturbations of the moon.
   ccampm = array([1.097594e-1, 2.896773e-7, 5.450474e-2, 1.438491e-7, -2.223581e-2, 5.083103e-8, 1.002548e-2, -2.291823e-8, 1.148966e-2, 5.658888e-8, 8.249439e-3, 4.063015e-8])
   ccampm = reshape(ccampm, (3, 4))
   
   #ccpamv(k)=a*m*dl,dt (planets), dc1mme=1-mass(earth+moon)
   ccpamv = array([8.326827e-11, 1.843484e-11, 1.988712e-12, 1.881276e-12])
   dc1mme = 0.99999696e0
   
   #Time arguments.
   dt = (dje - dcto) / dcjul
   tvec = array([1e0, dt, dt * dt])
   
   #Values of all elements for the instant(aneous?) dje.
   temp = (transpose(dot(transpose(tvec), transpose(dcfel)))) % dc2pi
   dml = temp[0]
   forbel = temp[1:8]
   g = forbel[0]                         #old fortran equivalence
   
   deps = (tvec * dceps).sum() % dc2pi
   sorbel = (transpose(dot(transpose(tvec), transpose(ccsel)))) % dc2pi
   e = sorbel[0]                         #old fortran equivalence
   
   #Secular perturbations in longitude.
   dummy = cos(2.0)
   sn = sin((transpose(dot(transpose(tvec[0:2]), transpose(ccsec[:,1:3])))) % cc2pi)
   
   #Periodic perturbations of the emb (earth-moon barycenter).
   pertl = (ccsec[:,0] * sn).sum() + dt * ccsec3 * sn[2]
   pertld = 0.0
   pertr = 0.0
   pertrd = 0.0
   for k in range(0, 15):
      a = (dcargs[k,0] + dt * dcargs[k,1]) % dc2pi
      cosa = cos(a)
      sina = sin(a)
      pertl = pertl + ccamps[k,0] * cosa + ccamps[k,1] * sina
      pertr = pertr + ccamps[k,2] * cosa + ccamps[k,3] * sina
      if k < 11:   
         pertld = pertld + (ccamps[k,1] * cosa - ccamps[k,0] * sina) * ccamps[k,4]
         pertrd = pertrd + (ccamps[k,3] * cosa - ccamps[k,2] * sina) * ccamps[k,4]
   
   #Elliptic part of the motion of the emb.
   phi = (e * e / 4e0) * (((8e0 / e) - e) * sin(g) + 5 * sin(2 * g) + (13 / 3e0) * e * sin(3 * g))
   f = g + phi
   sinf = sin(f)
   cosf = cos(f)
   dpsi = (dc1 - e * e) / (dc1 + e * cosf)
   phid = 2 * e * ccsgd * ((1 + 1.5 * e * e) * cosf + e * (1.25 - 0.5 * sinf * sinf))
   psid = ccsgd * e * sinf / sqrt(dc1 - e * e)
   
   #Perturbed heliocentric motion of the emb.
   d1pdro = dc1 + pertr
   drd = d1pdro * (psid + dpsi * pertrd)
   drld = d1pdro * dpsi * (dcsld + phid + pertld)
   dtl = (dml + phi + pertl) % dc2pi
   dsinls = sin(dtl)
   dcosls = cos(dtl)
   dxhd = drd * dcosls - drld * dsinls
   dyhd = drd * dsinls + drld * dcosls
   
   #Influence of eccentricity, evection and variation on the geocentric
   # motion of the moon.
   pertl = 0.0
   pertld = 0.0
   pertp = 0.0
   pertpd = 0.0
   for k in range(0, 3):
      a = (dcargm[k,0] + dt * dcargm[k,1]) % dc2pi
      sina = sin(a)
      cosa = cos(a)
      pertl = pertl + ccampm[k,0] * sina
      pertld = pertld + ccampm[k,1] * cosa
      pertp = pertp + ccampm[k,2] * cosa
      pertpd = pertpd - ccampm[k,3] * sina
   
   #Heliocentric motion of the earth.
   tl = forbel[1] + pertl
   sinlm = sin(tl)
   coslm = cos(tl)
   sigma = cckm / (1.0 + pertp)
   a = sigma * (ccmld + pertld)
   b = sigma * pertpd
   dxhd = dxhd + a * sinlm + b * coslm
   dyhd = dyhd - a * coslm + b * sinlm
   dzhd = -sigma * ccfdi * cos(forbel[2])
   
   #Barycentric motion of the earth.
   dxbd = dxhd * dc1mme
   dybd = dyhd * dc1mme
   dzbd = dzhd * dc1mme
   for k in range(0, 4):
      plon = forbel[k + 3]
      pomg = sorbel[k + 1]
      pecc = sorbel[k + 9]
      tl = (plon + 2.0 * pecc * sin(plon - pomg)) % cc2pi
      dxbd = dxbd + ccpamv[k] * (sin(tl) + pecc * sin(pomg))
      dybd = dybd - ccpamv[k] * (cos(tl) + pecc * cos(pomg))
      dzbd = dzbd - ccpamv[k] * sorbel[k + 13] * cos(plon - sorbel[k + 5])
      
   
   #Transition to mean equator of date.
   dcosep = cos(deps)
   dsinep = sin(deps)
   dyahd = dcosep * dyhd - dsinep * dzhd
   dzahd = dsinep * dyhd + dcosep * dzhd
   dyabd = dcosep * dybd - dsinep * dzbd
   dzabd = dsinep * dybd + dcosep * dzbd
   
   #Epoch of mean equinox (deq) of zero implies that we should use
   # Julian ephemeris date (dje) as epoch of mean equinox.
   if deq == 0:   
      dvelh = au * (array([dxhd, dyahd, dzahd]))
      dvelb = au * (array([dxbd, dyabd, dzabd]))
      return (dvelh,dvelb)
   
   #General precession from epoch dje to deq.
   deqdat = (dje - dcto - dcbes) / dctrop + dc1900
   prema = premat(deqdat, deq, fk4=True)
   
   dvelh = au * (transpose(dot(transpose(prema), transpose(array([dxhd, dyahd, dzahd])))))
   dvelb = au * (transpose(dot(transpose(prema), transpose(array([dxbd, dyabd, dzabd])))))
   
   return (dvelh, dvelb)