detlaM = 0 imf = 'Sal' if imf == 'Sal': detlaM = 0.23 ifplot = False #%% for ii in range(1): HSC = HSC_set(zs, core = True,imf = imf) Horizon = Horizon_set(filename, HSC_Lbol_overall=HSC['HSC_Lbol_overall'], HSC_MBHs_overall=HSC['HSC_MBHs_overall'], zs = zs, I_mag_break = I_mag_break, imf = imf) #%% comp_plot(Horizon['BH_Mass'], Horizon['Eddington_ratio'], 'BH_Mass', 'Eddington_ratio') # plt.xlabel(r'log(M$_{\rm BH}$/M$_{\odot}$)',fontsize=30) # plt.ylabel('AGN Eddington ratio', fontsize=25) plt.tick_params(labelsize=25) plt.xlim(5,10) if ifplot == True: plt.show() else: plt.close() comp_plot(Horizon['logLbol_nois'], Horizon['BH_Mass_nois'], 'logLbol_nois', 'BH_Mass_nois', alpha = 0.2, label = 'Horizon') plt.scatter(Horizon['logLbol_nois_sl'], Horizon['BH_Mass_nois_sl'], color = 'green',alpha=0.2, zorder = 1, label = 'selected Horizon') plt.scatter(HSC['HSC_Lbol_overall'], HSC['HSC_MBHs_overall'],c='orange',alpha=0.2,zorder = 0.5, label = 'HSC QSO distribution') plt.xlabel('AGN logLbol', fontsize=25) plt.ylabel(r'log(M$_{\rm BH}$/M$_{\odot}$)',fontsize=30)
# plt.xlabel(r"log(M$_*$/M$_{\odot})$",fontsize=35) # plt.ylabel(r'log(M$_{\rm BH}$/M$_{\odot}$)',fontsize=35) # plt.title("HSC uniform sample",fontsize=35) # plt.tick_params(labelsize=25) # plt.xlim(9,12.5) # plt.ylim(6.0,10.3) # cbar = plt.colorbar() # cbar.ax.tick_params(labelsize=20) # cbar.ax.set_ylabel('Redshift', rotation=270, fontsize = 25, labelpad=25) # if ifplot == True: # plt.show() # else: # plt.close() #%% comp_plot(MBII['BH_Mass'], MBII['sdss_g_pointsource'], 'BH_Mass', 'sdss_g_pointsource') # plt.xlabel(r'log(M$_{\rm BH}$/M$_{\odot}$)',fontsize=30) # plt.ylabel('AGN abs magnitude rest-frame g band', fontsize=25) plt.xlim(5, 10) plt.ylim(-26, -14) if ifplot == True: plt.show() else: plt.close() comp_plot(MBII['BH_Mass'], MBII['Eddington_ratio'], 'BH_Mass', 'Eddington_ratio') # plt.xlabel(r'log(M$_{\rm BH}$/M$_{\odot}$)',fontsize=30) # plt.ylabel('AGN Eddington ratio', fontsize=25) plt.tick_params(labelsize=25) plt.xlim(5, 10)
detlaM = 0 imf = 'Sal' if imf == 'Sal': detlaM = 0.23 ifplot = True #%% for ii in range(1): HSC = HSC_set(zs, core = True,imf = imf) EAGLE = EAGLE_set(filename, HSC_Lbol_overall=HSC['HSC_Lbol_overall'], HSC_MBHs_overall=HSC['HSC_MBHs_overall'], zs = zs, I_mag_break = I_mag_break, imf = imf) #%% comp_plot(EAGLE['BH_Mass'], EAGLE['Eddington_ratio'], 'BH_Mass', 'Eddington_ratio') # plt.xlabel(r'log(M$_{\rm BH}$/M$_{\odot}$)',fontsize=30) # plt.ylabel('AGN Eddington ratio', fontsize=25) plt.tick_params(labelsize=25) plt.xlim(5,10) if ifplot == True: plt.show() else: plt.close() comp_plot(EAGLE['logLbol_nois'], EAGLE['BH_Mass_nois'], 'logLbol_nois', 'BH_Mass_nois', alpha = 0.2, label = 'EAGLE') plt.scatter(EAGLE['logLbol_nois_sl'], EAGLE['BH_Mass_nois_sl'], color = 'green',alpha=0.2, zorder = 1, label = 'selected EAGLE') plt.scatter(HSC['HSC_Lbol_overall'], HSC['HSC_MBHs_overall'],c='orange',alpha=0.2,zorder = 0.5, label = 'HSC QSO distribution') plt.xlabel('AGN logLbol', fontsize=25) plt.ylabel(r'log(M$_{\rm BH}$/M$_{\odot}$)',fontsize=30)
plt.scatter(HSC['HSC_Mstar_overall'], HSC['HSC_MBHs_overall'],c=HSC['HSC_z_overall'], zorder = 0.5, alpha=0.4, edgecolors='white', cmap=cmap_r) plt.plot(xl, m_ml*xl+b_ml, color="k", linewidth=4.0,zorder=-0.5) plt.xlabel(r"log(M$_*$/M$_{\odot})$",fontsize=35) plt.ylabel(r'log(M$_{\rm BH}$/M$_{\odot}$)',fontsize=35) plt.title("HSC uniform sample",fontsize=35) plt.tick_params(labelsize=25) plt.xlim(9,12.5) plt.ylim(6.0,10.3) cbar = plt.colorbar() cbar.ax.tick_params(labelsize=20) cbar.ax.set_ylabel('Redshift', rotation=270, fontsize = 25, labelpad=25) plt.show() #%% comp_plot(Illustris['BH_Mass'], Illustris['sdss_g_pointsource'], 'BH_Mass', 'sdss_g_pointsource') # plt.xlabel(r'log(M$_{\rm BH}$/M$_{\odot}$)',fontsize=30) # plt.ylabel('AGN abs magnitude rest-frame g band', fontsize=25) plt.xlim(5,10) plt.ylim(-26, -14) plt.show() comp_plot(Illustris['BH_Mass'], Illustris['Eddington_ratio'], 'BH_Mass', 'Eddington_ratio') # plt.xlabel(r'log(M$_{\rm BH}$/M$_{\odot}$)',fontsize=30) # plt.ylabel('AGN Eddington ratio', fontsize=25) plt.tick_params(labelsize=25) plt.xlim(5,10) plt.show() # comp_plot(Illustris['logLbol'], Illustris['BH_Mass'], 'logLbol', 'BH_Mass') comp_plot(Illustris['logLbol_nois'], Illustris['BH_Mass_nois'], 'logLbol', 'BH_Mass')