def main(opts): RECEIVED_PARAMS = nni.get_next_parameter() LOG.debug(RECEIVED_PARAMS) if 'onlyIncoming' == opts.mode: PARAMS = cudnnLstm.generate_default_onlyIncoming_params(opts.dataType) elif 'both' == opts.mode: PARAMS = cudnnLstm.generate_default_whole_params(opts.dataType) PARAMS.update(RECEIVED_PARAMS) try: X_train_raw, y_train, X_test_raw, y_test, labelMap = loadTrainAndTestData( opts.input, PARAMS['data_dim'], opts.dataType, opts.mode) NUM_CLASS = len(set(y_test)) X_train = X_train_raw.reshape(X_train_raw.shape[0], X_train_raw.shape[1], 1) X_test = X_test_raw.reshape(X_test_raw.shape[0], X_test_raw.shape[1], 1) y_train = np_utils.to_categorical(y_train, NUM_CLASS) y_test = np_utils.to_categorical(y_test, NUM_CLASS) lstm_model = LSTM(opts, PARAMS) modelPath = lstm_model.train(PARAMS, X_train, y_train, NUM_CLASS) lstm_model.test(X_test, y_test, NUM_CLASS, modelPath) except Exception as e: LOG.exception(e) raise
def loadData(opts, PARAMS): X_train, y_train, X_test, y_test, labelMap = prepareData.loadTrainAndTestData( opts.input, PARAMS['data_dim'], opts.dataType, opts.mode) NUM_CLASS = len(set(y_test)) y_train = np_utils.to_categorical(y_train, NUM_CLASS) y_test = np_utils.to_categorical(y_test, NUM_CLASS) return X_train, y_train, X_test, y_test, labelMap, NUM_CLASS
def loadData(opts, params): X_train_raw, y_train, X_test_raw, y_test, labelMap = loadTrainAndTestData( opts.input, params['data_dim'], opts.dataType) NUM_CLASS = len(set(y_test)) X_train = X_train_raw.reshape(X_train_raw.shape[0], X_train_raw.shape[1], 1) X_test = X_test_raw.reshape(X_test_raw.shape[0], X_test_raw.shape[1], 1) y_train = np_utils.to_categorical(y_train, NUM_CLASS) y_test = np_utils.to_categorical(y_test, NUM_CLASS) return X_train, y_train, X_test, y_test, labelMap, NUM_CLASS
def main(opts): RECEIVED_PARAMS = nni.get_next_parameter() LOG.debug(RECEIVED_PARAMS) if 'onlyIncoming' == opts.mode: PARAMS = sae.generate_default_onlyIncoming_params(opts.dataType) elif 'both' == opts.mode: PARAMS = sae.generate_default_whole_params(opts.dataType) PARAMS.update(RECEIVED_PARAMS) try: X_train, y_train, X_test, y_test, labelMap = prepareData.loadTrainAndTestData(opts.input, PARAMS['data_dim'], opts.dataType, opts.mode) NUM_CLASS = len(set(y_test)) y_train = np_utils.to_categorical(y_train, NUM_CLASS) y_test = np_utils.to_categorical(y_test, NUM_CLASS) sae_model = SAE(opts, PARAMS) modelPath = sae_model.train(PARAMS, X_train, y_train, NUM_CLASS) sae_model.test(X_test, y_test, NUM_CLASS, modelPath) except Exception as e: LOG.exception(e) raise