コード例 #1
0
def train(args):
    workspace = args.workspace

    # Load data.
    t1 = time.time()
    tr_hdf5_path = os.path.join(workspace, "packed_features", "spectrogram",
                                "data.h5")
    tr_y = pp_data.load_hdf5(tr_hdf5_path)
    tr_y = np.array(tr_y)[1]
    print("data shape is {}".format(tr_y.shape))
    print("Load data time: %s s" % (time.time() - t1, ))

    # scaler data
    t1 = time.time()
    scaler_path = os.path.join(workspace, "packed_features", "spectrogram",
                               "scaler.p")
    scaler = pickle.load(open(scaler_path, 'rb'))
    tr_y = pp_data.scale_on_2d(tr_y, scaler)
    print("Scale data time: %s s" % (time.time() - t1, ))

    # batch
    batch_size = 500
    print("%d iterations / epoch" % (tr_y.shape[0] / batch_size))

    # data shape and input shape
    (n_segs, n_freq) = tr_y.shape
コード例 #2
0
def dnn1_colors(input):
    scaler_path = os.path.join(conf1.packed_feature_dir, "test", "scaler.p")
    scaler = dnn1.pickle.load(open(scaler_path, 'rb'))

    # n_pad = (conf1.n_concat - 1) / 2
    # enh_pad[0] = pp.pad_with_border(enh_pad[0], n_pad)
    prova = pp.log_sp(input)

    prova = pp.scale_on_2d(np.abs(prova), scaler)
    prova = pp.inverse_scale_on_2d(prova, scaler)
    return -prova
コード例 #3
0
def predict_file(file_path, model, scaler):

    (a, _) = pp.read_audio(file_path)
    mixed_complex = pp.calc_sp(a, 'complex')

    mixed_x = np.abs(mixed_complex)

    # Process data.
    n_pad = (conf1.n_concat - 1) / 2
    mixed_x = pp.pad_with_border(mixed_x, n_pad)
    mixed_x = pp.log_sp(mixed_x)
    # speech_x = dnn1_train.log_sp(speech_x)


    # Scale data.
    # if scale:
    mixed_x = pp.scale_on_2d(mixed_x, scaler)
    # speech_x = pp.scale_on_2d(speech_x, scaler)

    # Cut input spectrogram to 3D segments with n_concat.
    mixed_x_3d = pp.mat_2d_to_3d(mixed_x, agg_num=conf1.n_concat, hop=1)

    # Predict.
    pred = model.predict(mixed_x_3d)

    if visualize_plot:
        visualize(mixed_x, pred)
    # Inverse scale.
    # if scale:
    mixed_x = pp.inverse_scale_on_2d(mixed_x, scaler)
    # speech_x = dnn1_train.inverse_scale_on_2d(speech_x, scaler)
    pred = pp.inverse_scale_on_2d(pred, scaler)


    # Debug plot.

    # Recover enhanced wav.
    pred_sp = np.exp(pred)
    s = recover_wav(pred_sp, mixed_complex, conf1.n_overlap, np.hamming)
    s *= np.sqrt((np.hamming(conf1.n_window) ** 2).sum())  # Scaler for compensate the amplitude
    # change after spectrogram and IFFT.

    # Write out enhanced wav.

    # audio_path = os.path.dirname(file_path)
    # pp.write_audio(audio_path, s, conf1.sample_rate)

    return mixed_complex, pred, s
コード例 #4
0
    def generate(self, path_list):
        iter = 0
        epoch = 0
        pointer = 0
        path = path_list[epoch]
        n_file = len(path_list)
        data = h5py.File(path)
        x = data['x']
        y = data['y']
        batch_size = self._batch_size_
        n_samples = len(x)
        index = np.arange(n_samples)
        np.random.shuffle(index)
        while True:
            if (self._type_ == 'test') and (self._te_max_iter_ is not None):
                if iter == self._te_max_iter_:
                    break
            iter += 1
            if pointer >= n_samples:
                epoch += 1
                if epoch == n_file:
                    epoch = 0
                path = path_list[epoch]
                print("start %s"%path)
                n_file = len(path_list)
                data = h5py.File(path)
                x = data['x']
                y = data['y']
                if (self._type_) == 'test' and (epoch == n_file - 1):
                    break
                pointer = 0
                np.random.shuffle(index)                
 
            batch_idx = index[pointer : min(pointer + batch_size, n_samples)]
            pointer += batch_size
            yield pp_data.scale_on_3d(x[sorted(batch_idx)], self._scaler_), pp_data.scale_on_2d(y[sorted(batch_idx)], self._scaler_)
コード例 #5
0
def train(args):
    """Train the neural network. Write out model every several iterations.

    Args:
      workspace: str, path of workspace.
      tr_snr: float, training SNR.
      te_snr: float, testing SNR.
      lr: float, learning rate.
    """

    print(args)
    workspace = args.workspace
    tr_snr = args.tr_snr
    te_snr = args.te_snr
    lr = args.lr
    snr_arr = [0, 5, 10, 15]
    """
    workspace = "workspace"
    tr_snr = 0
    te_snr = 0
    lr = 1e-4
    """
    # Load data.
    t1 = time.time()
    for i in snr_arr:
        tr_snr = i
        te_snr = i
        tr_hdf5_path = os.path.join(workspace, "packed_features", "spectrogram", "train", "%ddb" % int(tr_snr), "data.h5")
        te_hdf5_path = os.path.join(workspace, "packed_features", "spectrogram", "test", "%ddb" % int(te_snr), "data.h5")
        (tr_x, tr_y, tr_n) = pp_data.load_hdf5(tr_hdf5_path)  # zxy tr_n
        (te_x, te_y, te_n) = pp_data.load_hdf5(te_hdf5_path)  # zxy te_n
        print(tr_x.shape, tr_y.shape)
        # Scale data.
        if True:
            t2 = time.time()
            scaler_path = os.path.join(workspace, "packed_features", "spectrogram", "train", "%ddb" % int(tr_snr),
                                       "scaler.p")
            scaler = pickle.load(open(scaler_path, 'rb'))
            tr_x = pp_data.scale_on_3d(tr_x, scaler)
            tr_y = pp_data.scale_on_2d(tr_y, scaler)
            # tr_n = pp_data.scale_on_2d(tr_n, scaler)#zxy
            te_x = pp_data.scale_on_3d(te_x, scaler)
            te_y = pp_data.scale_on_2d(te_y, scaler)
            # te_n = pp_data.scale_on_2d(te_n, scaler)#zxy
            print("Scale data(%sdb) time: %s s" % (tr_snr, time.time() - t2,))
        # append data
        if i == 0:
            tr_x_all = tr_x
            tr_y_all = tr_y
            te_x_all = te_x
            te_y_all = te_y
        else:
            tr_x_all = np.concatenate((tr_x_all, tr_x), axis=0)
            tr_y_all = np.concatenate((tr_y_all, tr_y), axis=0)
            te_x_all = np.concatenate((te_x_all, te_x), axis=0)
            te_y_all = np.concatenate((te_y_all, te_y), axis=0)

    print(tr_x_all.shape, tr_y_all.shape)#zxy tr_n.shape
    print(te_x_all.shape, te_y_all.shape)#zxy te_n.shape
    print("Load data time: %s s" % (time.time() - t1,))

    batch_size = 100
    print("%d iterations / epoch" % int(tr_x.shape[0] / batch_size))

    # Debug plot.
    if False:
        plt.matshow(tr_x[0 : 1000, 0, :].T, origin='lower', aspect='auto', cmap='jet')
        plt.show()
        pause

    # Build model
    (_, n_concat, n_freq) = tr_x.shape

    # 1.Load Pre-model by Xu
    model_path = os.path.join("premodel", "sednn_keras_logMag_Relu2048layer1_1outFr_7inFr_dp0.2_weights.75-0.00.hdf5")
    pre_model = load_model(model_path)
    #pre_model.summary()

    # 2.Build train model
    n_hid = 2048
    #input:feature_x
    main_input = Input(shape=(n_concat, n_freq), name='main_input')
    x = Flatten(input_shape=(n_concat, n_freq))(main_input)
    # 2.1Pre-train to get feature_x // should be called tranform learning 2018-7-8 experiment13
    #x = pre_model(x)
    #x = (pre_model.get_layer('input_1'))(x)
    #x = (pre_model.get_layer('dense_1'))(x)
    #x = (Dense(n_hid, activation='linear'))(x)

    ## model_mid = Model(inputs=pre_model.input, outputs=pre_model.get_layer('dense_1').output)
    #model_mid.summary()
    ## x=model_mid(x)
    x = (Dense(n_hid, activation='linear'))(x)
    """
    x = (LSTM(n_hid, 
                activation='tanh', 
                recurrent_activation='hard_sigmoid', 
                use_bias=True, 
                kernel_initializer='glorot_uniform', 
                recurrent_initializer='orthogonal', 
                bias_initializer='zeros', 
                unit_forget_bias=True, 
                kernel_regularizer=None, 
                recurrent_regularizer=None, 
                bias_regularizer=None, 
                activity_regularizer=None, 
                kernel_constraint=None, 
                recurrent_constraint=None, 
                bias_constraint=None, 
                dropout=0.0, 
                recurrent_dropout=0.3))(main_input)

    x = (LSTM(n_hid, 
                activation='tanh', 
                recurrent_activation='hard_sigmoid', 
                use_bias=True, 
                kernel_initializer='glorot_uniform', 
                recurrent_initializer='orthogonal', 
                bias_initializer='zeros', 
                unit_forget_bias=True, 
                kernel_regularizer=None, 
                recurrent_regularizer=None, 
                bias_regularizer=None, 
                activity_regularizer=None, 
                kernel_constraint=None, 
                recurrent_constraint=None, 
                bias_constraint=None, 
                dropout=0.0, 
                recurrent_dropout=0.3))(x)
    x = (LSTM(n_hid, 
                activation='tanh', 
                recurrent_activation='hard_sigmoid', 
                use_bias=True, 
                kernel_initializer='glorot_uniform', 
                recurrent_initializer='orthogonal', 
                bias_initializer='zeros', 
                unit_forget_bias=True, 
                kernel_regularizer=None, 
                recurrent_regularizer=None, 
                bias_regularizer=None, 
                activity_regularizer=None, 
                kernel_constraint=None, 
                recurrent_constraint=None, 
                bias_constraint=None, 
                dropout=0.0, 
                recurrent_dropout=0.3))(x)

    """
    #hidden1
    x = (Dense(n_hid, name='hidden_1'))(x)
    x = LeakyReLU(alpha=0.3)(x)
    x = Dropout(0.3)(x)
    x = (Dense(n_hid, activation='linear'))(x)
    #hidden2
    x = (Dense(n_hid, name='hidden_2'))(x)
    x = LeakyReLU(alpha=0.3)(x)
    x = Dropout(0.3)(x)
    """
    x = (Dense(n_hid, activation='linear'))(x)
    #hidden3
    x = (Dense(n_hid, name='hidden_3'))(x)
    x = LeakyReLU(alpha=0.3)(x)
    x = Dropout(0.3)(x)
    #x = (Dense(n_hid, activation='linear'))(x)
    #hidden4
    x = (Dense(n_hid, name='hidden_4'))(x)
    x = LeakyReLU(alpha=0.3)(x)
    x = Dropout(0.5)(x)
    """
    #output1:^speech
    output_y = Dense(n_freq, activation='linear', name='out_y')(x)
    #define noisy_to_speech&noise model
    model = Model(inputs=main_input, outputs=output_y)
    #compile model with different loss and weights
    model.compile(optimizer=Adam(lr=lr),
                loss='mae',
                metrics=['accuracy'])
    #show model_summary
    model.summary()

    # Data generator.
    tr_gen = DataGenerator(batch_size=batch_size, type='train')
    eval_te_gen = DataGenerator(batch_size=batch_size, type='test', te_max_iter=100)
    eval_tr_gen = DataGenerator(batch_size=batch_size, type='test', te_max_iter=100)

    # Directories for saving models and training stats
    model_dir = os.path.join(workspace, "models")  # , "%ddb" % int(tr_snr))
    pp_data.create_folder(model_dir)

    stats_dir = os.path.join(workspace, "training_stats")  # , "%ddb" % int(tr_snr))
    pp_data.create_folder(stats_dir)

    # Print loss before training.
    iter = 0
    tr_loss = eval(model, eval_tr_gen, tr_x, tr_y)
    te_loss = eval(model, eval_te_gen, te_x, te_y)
    print("Iteration: %d, tr_loss: %f, te_loss: %f" % (iter, tr_loss, te_loss))

    #tr_n_loss = eval(model, eval_tr_gen, tr_x, tr_n)#zxy0523
    #te_n_loss = eval(model, eval_te_gen, te_x, te_n)
    #print("Iteration: %d, tr_n_loss: %f, te_n_loss: %f" % (iter, tr_n_loss, te_n_loss))
    # Save out training stats.
    stat_dict = {'iter': iter,
                    'tr_loss': tr_loss,
                    'te_loss': te_loss, }
    stat_path = os.path.join(stats_dir, "%diters.p" % iter)
    cPickle.dump(stat_dict, open(stat_path, 'wb'), protocol=cPickle.HIGHEST_PROTOCOL)

    # Train.
    t1 = time.time()
    for (batch_x, batch_y) in tr_gen.generate(xs=[tr_x], ys=[tr_y]):
        loss = model.train_on_batch(batch_x, batch_y)
        iter += 1

        # Validate and save training stats.
        if iter % 50 == 0:
            tr_loss = eval(model, eval_tr_gen, tr_x, tr_y)
            te_loss = eval(model, eval_te_gen, te_x, te_y)

            print("Iteration: %d, tr_loss: %f, te_loss: %f" % (iter, tr_loss, te_loss))

            # Save out training stats.
            stat_dict = {'iter': iter,
                         'tr_loss': tr_loss,
                         'te_loss': te_loss, }
            stat_path = os.path.join(stats_dir, "%diters.p" % iter)
            cPickle.dump(stat_dict, open(stat_path, 'wb'), protocol=cPickle.HIGHEST_PROTOCOL)

        # Save model.
        if iter % 3000 == 0:
            model_path = os.path.join(model_dir, "md_dnn2_%diters.h5" % iter)
            model.save(model_path)
            print("Saved model to %s" % model_path)

        if iter == 3001:
            break
    #zxy
    resultz = model.evaluate(tr_x, tr_y)
    print ("/nTrain Acc:" )
    print(resultz)
    resultz = model.evaluate(te_x, te_y)
    print ("/nTest Acc:" )
    print(resultz)
    print(model.metrics_names) #zxy
    print("Training time: %s s" % (time.time() - t1,))
コード例 #6
0
def inference(args):
    """Inference all test data, write out recovered wavs to disk. 
    
    Args:
      workspace: str, path of workspace. 
      tr_snr: float, training SNR. 
      te_snr: float, testing SNR. 
      n_concat: int, number of frames to concatenta, should equal to n_concat 
          in the training stage. 
      iter: int, iteration of model to load. 
      visualize: bool, plot enhanced spectrogram for debug. 
    """
    print(args)
    workspace = args.workspace
    tr_snr = args.tr_snr
    te_snr = args.te_snr
    n_concat = args.n_concat
    iter = args.iteration

    n_window = cfg.n_window
    n_overlap = cfg.n_overlap
    fs = cfg.sample_rate
    scale = True

    # Load model.
    model_path = os.path.join(workspace, "models", "%ddb" % int(tr_snr),
                              "md_%diters.h5" % iter)
    model = load_model(model_path)

    # Load scaler.
    scaler_path = os.path.join(workspace, "packed_features", "spectrogram",
                               "train", "%ddb" % int(tr_snr), "scaler.p")
    scaler = pickle.load(open(scaler_path, 'rb'))

    # Load test data.
    feat_dir = os.path.join(workspace, "features", "spectrogram", "test",
                            "%ddb" % int(te_snr))
    names = os.listdir(feat_dir)

    for (cnt, na) in enumerate(names):
        # Load feature.
        feat_path = os.path.join(feat_dir, na)
        data = cPickle.load(open(feat_path, 'rb'))
        [mixed_cmplx_x, speech_x, noise_x, alpha, na] = data
        mixed_x = np.abs(mixed_cmplx_x)

        # Process data.
        n_pad = (n_concat - 1) / 2
        mixed_x = pp_data.pad_with_border(mixed_x, n_pad)
        mixed_x = pp_data.log_sp(mixed_x)
        speech_x = pp_data.log_sp(speech_x)

        # Scale data.
        if scale:
            mixed_x = pp_data.scale_on_2d(mixed_x, scaler)
            speech_x = pp_data.scale_on_2d(speech_x, scaler)

        # Cut input spectrogram to 3D segments with n_concat.
        mixed_x_3d = pp_data.mat_2d_to_3d(mixed_x, agg_num=n_concat, hop=1)

        # Predict.
        pred = model.predict(mixed_x_3d)
        print(cnt, na)

        # Inverse scale.
        if scale:
            mixed_x = pp_data.inverse_scale_on_2d(mixed_x, scaler)
            speech_x = pp_data.inverse_scale_on_2d(speech_x, scaler)
            pred = pp_data.inverse_scale_on_2d(pred, scaler)

        # Debug plot.
        if args.visualize:
            fig, axs = plt.subplots(3, 1, sharex=False)
            axs[0].matshow(mixed_x.T,
                           origin='lower',
                           aspect='auto',
                           cmap='jet')
            axs[1].matshow(speech_x.T,
                           origin='lower',
                           aspect='auto',
                           cmap='jet')
            axs[2].matshow(pred.T, origin='lower', aspect='auto', cmap='jet')
            axs[0].set_title("%ddb mixture log spectrogram" % int(te_snr))
            axs[1].set_title("Clean speech log spectrogram")
            axs[2].set_title("Enhanced speech log spectrogram")
            for j1 in xrange(3):
                axs[j1].xaxis.tick_bottom()
            plt.tight_layout()
            plt.show()

        # Recover enhanced wav.
        pred_sp = np.exp(pred)
        s = recover_wav(pred_sp, mixed_cmplx_x, n_overlap, np.hamming)
        s *= np.sqrt((np.hamming(n_window)**2
                      ).sum())  # Scaler for compensate the amplitude
        # change after spectrogram and IFFT.

        # Write out enhanced wav.
        out_path = os.path.join(workspace, "enh_wavs", "test",
                                "%ddb" % int(te_snr), "%s.enh.wav" % na)
        pp_data.create_folder(os.path.dirname(out_path))
        pp_data.write_audio(out_path, s, fs)
コード例 #7
0
ファイル: main_dnn.py プロジェクト: flyingleafe/sednn
def inference(workspace,
              tr_snr,
              te_snr,
              n_concat,
              iteration,
              model_name=None,
              visualize=False,
              force=False):
    """Inference all test data, write out recovered wavs to disk.

    Args:
      workspace: str, path of workspace.
      tr_snr: float, training SNR.
      te_snr: float, testing SNR.
      n_concat: int, number of frames to concatenta, should equal to n_concat
          in the training stage.
      iter: int, iteration of model to load.
      visualize: bool, plot enhanced spectrogram for debug.
    """

    n_window = cfg.n_window
    n_overlap = cfg.n_overlap
    fs = cfg.sample_rate
    scale = True

    if model_name is None:
        model_name = '_'.join([str(snr) for snr in tr_snr]) + 'ddbs'

    # Load model.
    model_path = os.path.join(workspace, "models", model_name,
                              "md_%diters.h5" % iteration)
    print('GPU available: ', tf.test.is_gpu_available())

    model = load_model(model_path)

    # Load scaler.
    scaler = read_combined_scaler(workspace, tr_snr)

    for snr in te_snr:
        # Load test data.
        feat_dir = os.path.join(workspace, "features", "spectrogram", "test",
                                "%ddb" % int(snr))
        feat_paths = all_file_paths(feat_dir)

        for (cnt, feat_path) in tqdm(enumerate(feat_paths),
                                     'Inference (creating enhanced speech)'):
            # Check if the enhanced audio is already inferred
            na = str(PurePath(feat_path).relative_to(feat_dir).with_suffix(''))
            out_path = os.path.join(workspace, "enh_wavs", "test", model_name,
                                    "%ddb" % int(snr), "%s.enh.wav" % na)
            if os.path.isfile(out_path) and not force:
                print(f'Enhanced audio {out_path} is already made')
                continue

            # Load feature.
            data = pickle.load(open(feat_path, 'rb'))
            [mixed_cmplx_x, speech_x, noise_x, ir_mask, alpha, na] = data
            mixed_x = np.abs(mixed_cmplx_x)

            # Process data.
            n_pad = (n_concat - 1) / 2
            mixed_x = pp_data.pad_with_border(mixed_x, n_pad)
            mixed_x = pp_data.log_sp(mixed_x)
            speech_x = pp_data.log_sp(speech_x)

            # Scale data.
            if scale:
                mixed_x = pp_data.scale_on_2d(mixed_x, scaler)
                speech_x = pp_data.scale_on_2d(speech_x, scaler)

            # Cut input spectrogram to 3D segments with n_concat.
            mixed_x_3d = pp_data.mat_2d_to_3d(mixed_x, agg_num=n_concat, hop=1)

            # Predict.
            pred = model.predict(mixed_x_3d)
            #print(cnt, na)

            # Inverse scale.
            if scale:
                mixed_x = pp_data.inverse_scale_on_2d(mixed_x, scaler)
                speech_x = pp_data.inverse_scale_on_2d(speech_x, scaler)
                #pred = pp_data.inverse_scale_on_2d(pred, scaler)

            # Debug plot.
            if visualize:
                fig, axs = plt.subplots(3, 1, sharex=False)
                axs[0].matshow(mixed_x.T,
                               origin='lower',
                               aspect='auto',
                               cmap='jet')
                axs[1].matshow(speech_x.T,
                               origin='lower',
                               aspect='auto',
                               cmap='jet')
                axs[2].matshow(pred.T,
                               origin='lower',
                               aspect='auto',
                               cmap='jet')
                axs[0].set_title("%ddb mixture log spectrogram" % int(te_snr))
                axs[1].set_title("Clean speech log spectrogram")
                axs[2].set_title("Enhanced speech log spectrogram")
                for j1 in xrange(3):
                    axs[j1].xaxis.tick_bottom()
                plt.tight_layout()
                plt.show()

            # Recover enhanced wav
            s = recover_wav(pred,
                            mixed_cmplx_x,
                            n_overlap,
                            np.hamming,
                            irr_mask=True)
            s *= np.sqrt((np.hamming(n_window)**2
                          ).sum())  # Scaler for compensate the amplitude
            # change after spectrogram and IFFT.

            # Write out enhanced wav.
            pp_data.create_folder(os.path.dirname(out_path))
            pp_data.write_audio(out_path, s, fs)
コード例 #8
0
def train_noise(args):
    """Train the neural network. Write out model every several iterations.

    Args:
      workspace: str, path of workspace.
      tr_snr: float, training SNR.
      te_snr: float, testing SNR.
      lr: float, learning rate.
    """

    print(args)
    workspace = args.workspace
    tr_snr = args.tr_snr
    te_snr = args.te_snr
    lr = args.lr
    """
    workspace = "workspace"
    tr_snr = 0
    te_snr = 0
    lr = 1e-4
    """
    # Load data.
    t1 = time.time()
    tr_hdf5_path = os.path.join(workspace, "packed_features", "spectrogram", "train", "%ddb" % int(tr_snr), "data.h5")
    te_hdf5_path = os.path.join(workspace, "packed_features", "spectrogram", "test", "%ddb" % int(te_snr), "data.h5")
    (tr_x, tr_y, tr_n) = pp_data.load_hdf5(tr_hdf5_path)#zxy tr_n
    (te_x, te_y, te_n) = pp_data.load_hdf5(te_hdf5_path)#zxy te_n
    print(tr_x.shape, tr_y.shape, tr_n.shape)#zxy tr_n.shape
    print(te_x.shape, te_y.shape, te_n.shape)#zxy te_n.shape
    print("Load data time: %s s" % (time.time() - t1,))

    batch_size = 500
    print("%d iterations / epoch" % int(tr_x.shape[0] / batch_size))

    # Scale data.
    if True:
        t1 = time.time()
        scaler_path = os.path.join(workspace, "packed_features", "spectrogram", "train", "%ddb" % int(tr_snr), "scaler.p")
        scaler = pickle.load(open(scaler_path, 'rb'))
        tr_x = pp_data.scale_on_3d(tr_x, scaler)
        #tr_y = pp_data.scale_on_2d(tr_y, scaler)
        tr_n = pp_data.scale_on_2d(tr_n, scaler)#zxy
        te_x = pp_data.scale_on_3d(te_x, scaler)
        #te_y = pp_data.scale_on_2d(te_y, scaler)
        te_n = pp_data.scale_on_2d(te_n, scaler)#zxy
        print("Scale data time: %s s" % (time.time() - t1,))

    # Debug plot.
    if False:
        plt.matshow(tr_x[0 : 1000, 0, :].T, origin='lower', aspect='auto', cmap='jet')
        plt.show()
        pause

    # Build model
    (_, n_concat, n_freq) = tr_x.shape

    # 1.Load Pre-model by Xu
    model_path = os.path.join("premodel", "sednn_keras_logMag_Relu2048layer1_1outFr_7inFr_dp0.2_weights.75-0.00.hdf5")
    pre_model = load_model(model_path)

    # 2.Build train model
    n_hid = 2048
    #input:feature_x
    main_input = Input(shape=(n_concat, n_freq), name='main_input')
    x = Flatten(input_shape=(n_concat, n_freq))(main_input)
    # 2.1Pre-train to get feature_x
    x = pre_model(x)
    #hidden1
    x = (Dense(n_hid))(x)
    x = LeakyReLU(alpha=0.3)(x)
    x = Dropout(0.3)(x)
    #hidden2
    x = (Dense(n_hid))(x)
    x = LeakyReLU(alpha=0.3)(x)
    x = Dropout(0.3)(x)
    #hidden3
    x = (Dense(n_hid))(x)
    x = LeakyReLU(alpha=0.3)(x)
    x = Dropout(0.3)(x)
    #output1:^speech
    output_y = Dense(n_freq, activation='linear', name='out_y')(x)

    #define noisy_to_speech&noise model
    model = Model(inputs=main_input, outputs=output_y)
    #compile model with different loss and weights
    model.compile(optimizer=Adam(lr=lr),
              loss='mae',
              metrics=['accuracy'])
    #show model_summary
    model.summary()

    # Data generator.
    tr_gen = DataGenerator(batch_size=batch_size, type='train')
    eval_te_gen = DataGenerator(batch_size=batch_size, type='test', te_max_iter=100)
    eval_tr_gen = DataGenerator(batch_size=batch_size, type='test', te_max_iter=100)

    # Directories for saving models and training stats
    model_dir = os.path.join(workspace, "models", "%ddb_n" % int(tr_snr))
    pp_data.create_folder(model_dir)

    stats_dir = os.path.join(workspace, "training_stats", "%ddb_n" % int(tr_snr))
    pp_data.create_folder(stats_dir)

    # Print loss before training.
    iter = 0
    tr_loss = eval(model, eval_tr_gen, tr_x, tr_n)
    te_loss = eval(model, eval_te_gen, te_x, te_n)
    print("Iteration: %d, tr_loss: %f, te_loss: %f" % (iter, tr_loss, te_loss))

    #tr_n_loss = eval(model, eval_tr_gen, tr_x, tr_n)#zxy0523
    #te_n_loss = eval(model, eval_te_gen, te_x, te_n)
    #print("Iteration: %d, tr_n_loss: %f, te_n_loss: %f" % (iter, tr_n_loss, te_n_loss))
    # Save out training stats.
    stat_dict = {'iter': iter,
                    'tr_loss': tr_loss,
                    'te_loss': te_loss, }
    stat_path = os.path.join(stats_dir, "%diters.p" % iter)
    cPickle.dump(stat_dict, open(stat_path, 'wb'), protocol=cPickle.HIGHEST_PROTOCOL)

    # Train.
    t1 = time.time()
    for (batch_x, batch_n) in tr_gen.generate(xs=[tr_x], ys=[tr_n]):
        loss = model.train_on_batch(batch_x, batch_n)
        iter += 1

        # Validate and save training stats.
        if iter % 100 == 0:
            tr_loss = eval(model, eval_tr_gen, tr_x, tr_n)
            te_loss = eval(model, eval_te_gen, te_x, te_n)

            print("Iteration: %d, tr_loss: %f, te_loss: %f" % (iter, tr_loss, te_loss))

            # Save out training stats.
            stat_dict = {'iter': iter,
                         'tr_loss': tr_loss,
                         'te_loss': te_loss, }
            stat_path = os.path.join(stats_dir, "%diters.p" % iter)
            cPickle.dump(stat_dict, open(stat_path, 'wb'), protocol=cPickle.HIGHEST_PROTOCOL)

        # Save model.
        if iter % 1000 == 0:
            model_path = os.path.join(model_dir, "md_%diters.h5" % iter)
            model.save(model_path)
            print("Saved model to %s" % model_path)

        if iter == 3001:
            break
    #zxy
    resultz = model.evaluate(tr_x, tr_n)
    print ("/nTrain Acc:" )
    print(resultz)
    resultz = model.evaluate(te_x, te_n)
    print ("/nTest Acc:" )
    print(resultz)
    print(model.metrics_names) #zxy
    print("Training time: %s s" % (time.time() - t1,))
コード例 #9
0
def continue_train(args):
    workspace = args.workspace
    lr = args.lr
    iter = args.iteration
    data_type = "IRM"
    # Load model.
    if data_type == "DM":
        model_path = os.path.join(workspace, "models", "mixdb",
                                  "md_%diters.h5" % iter)
    else:
        model_path = os.path.join(workspace, "models", "mask_mixdb",
                                  "md_%diters.h5" % iter)
    model = load_model(model_path)
    #model = multi_gpu_model(model, 4)
    model.compile(loss='mean_absolute_error',
                  optimizer=Adam(lr=lr, beta_1=0.2))
    # Load data.
    t1 = time.time()
    if data_type == "DM":
        tr_hdf5_path = os.path.join(workspace, "packed_features",
                                    "spectrogram", "train", "mixdb", "data.h5")
        te_hdf5_path = os.path.join(workspace, "packed_features",
                                    "spectrogram", "test", "mixdb", "data.h5")
    else:
        tr_hdf5_path = os.path.join(workspace, "packed_features",
                                    "spectrogram", "train", "mask_mixdb",
                                    "data.h5")
        te_hdf5_path = os.path.join(workspace, "packed_features",
                                    "spectrogram", "test", "mask_mixdb",
                                    "data.h5")
    tr_hdf5_dir = os.path.join(workspace, "packed_features", "spectrogram",
                               "train", "mask_mixdb")
    tr_hdf5_names = os.listdir(tr_hdf5_dir)
    tr_hdf5_names = [i for i in tr_hdf5_names if i.endswith(".h5")]
    tr_path_list = [os.path.join(tr_hdf5_dir, i) for i in tr_hdf5_names]
    (tr_x, tr_y) = pp_data.load_hdf5(tr_hdf5_path)
    (te_x, te_y) = pp_data.load_hdf5(te_hdf5_path)
    print(tr_x.shape, tr_y.shape)
    print(te_x.shape, te_y.shape)
    print("Load data time: %s s" % (time.time() - t1, ))
    batch_size = 2048
    print("%d iterations / epoch" % int(tr_x.shape[0] / batch_size))
    # Scale data.
    if True:
        t1 = time.time()
        scaler_path = os.path.join(workspace, "packed_features", "spectrogram",
                                   "train", "mixdb", "scaler.p")
        scaler = pickle.load(open(scaler_path, 'rb'))
        tr_x = pp_data.scale_on_3d(tr_x, scaler)
        te_x = pp_data.scale_on_3d(te_x, scaler)
        if data_type == "DM":
            tr_y = pp_data.scale_on_2d(tr_y, scaler)
            te_y = pp_data.scale_on_2d(te_y, scaler)
        print("Scale data time: %s s" % (time.time() - t1, ))
    #scaler_path = os.path.join(workspace, "packed_features", "spectrogram", "train", "mixdb", "scaler.p")
    #scaler = pickle.load(open(scaler_path, 'rb'))
    tr_gen = DataGenerator(batch_size=batch_size, type='train')
    eval_te_gen = DataGenerator(batch_size=batch_size,
                                type='test',
                                te_max_iter=100)
    eval_tr_gen = DataGenerator(batch_size=batch_size,
                                type='test',
                                te_max_iter=100)
    #tr_gen = DataGenerator_h5py(batch_size=batch_size, type='train', scaler = scaler)
    #eval_te_gen = DataGenerator_h5py(batch_size=batch_size, type='test', te_max_iter=100, scaler =scaler)
    #eval_tr_gen = DataGenerator_h5py(batch_size=batch_size, type='test', te_max_iter=100, scaler =scaler)
    # Directories for saving models and training stats
    if data_type == "DM":
        model_dir = os.path.join(workspace, "models", "chinese_mixdb",
                                 "continue")
        stats_dir = os.path.join(workspace, "training_stats", "chinese_mixdb",
                                 "continue")
    else:
        model_dir = os.path.join(workspace, "models", "mask_mixdb", "continue")
        stats_dir = os.path.join(workspace, "training_stats", "mask_mixdb",
                                 "continue")
    pp_data.create_folder(model_dir)
    pp_data.create_folder(stats_dir)
    # Print loss before training.
    iter = 0
    tr_loss = eval(model, eval_tr_gen, tr_x, tr_y)
    te_loss = eval(model, eval_te_gen, te_x, te_y)
    #tr_loss = eval_h5py(model, eval_tr_gen, tr_path_list)
    #te_loss = eval_h5py(model, eval_te_gen, [te_hdf5_path])
    print("Iteration: %d, tr_loss: %f, te_loss: %f" % (iter, tr_loss, te_loss))
    # Save out training stats.
    stat_dict = {
        'iter': iter,
        'tr_loss': tr_loss,
        'te_loss': te_loss,
    }
    stat_path = os.path.join(stats_dir, "%diters.p" % iter)
    cPickle.dump(stat_dict,
                 open(stat_path, 'wb'),
                 protocol=cPickle.HIGHEST_PROTOCOL)
    # Train.
    t1 = time.time()
    for (batch_x, batch_y) in tr_gen.generate(xs=[tr_x], ys=[tr_y]):
        #for (batch_x, batch_y) in tr_gen.generate(tr_path_list):
        loss = model.train_on_batch(batch_x, batch_y)
        iter += 1
        # Validate and save training stats.
        if iter % 500 == 0:
            tr_loss = eval(model, eval_tr_gen, tr_x, tr_y)
            te_loss = eval(model, eval_te_gen, te_x, te_y)
            #tr_loss = eval_h5py(model, eval_tr_gen, tr_path_list)
            #te_loss = eval_h5py(model, eval_te_gen, [te_hdf5_path])
            print("Iteration: %d, tr_loss: %f, te_loss: %f" %
                  (iter, tr_loss, te_loss))
            # Save out training stats.
            stat_dict = {
                'iter': iter,
                'tr_loss': tr_loss,
                'te_loss': te_loss,
            }
            stat_path = os.path.join(stats_dir, "%diters.p" % iter)
            cPickle.dump(stat_dict,
                         open(stat_path, 'wb'),
                         protocol=cPickle.HIGHEST_PROTOCOL)
        # Save model.
        if iter % 5000 == 0:
            model_path = os.path.join(model_dir, "md_%diters.h5" % iter)
            model.save(model_path)
            print("Saved model to %s" % model_path)
        if iter == 100001:
            break
    print("Training time: %s s" % (time.time() - t1, ))
コード例 #10
0
def continue_train_tfrecord():
    workspace = "workspace"
    lr = 1e-5
    iter = 220000
    data_type = "IRM"
    # Load model.
    if data_type == "DM":
        model_path = os.path.join(workspace, "models", "elu_mixdb",
                                  "md_%diters.h5" % iter)
    else:
        model_path = os.path.join(workspace, "models", "mask_mixdb",
                                  "md_%diters.h5" % iter)

    model = load_model(model_path)
    #model = multi_gpu_model(model, 4)
    model.compile(loss='mean_absolute_error',
                  optimizer=Adam(lr=lr, beta_1=0.2))
    # Load data.
    if data_type == "DM":
        tr_hdf5_dir = os.path.join(workspace, "tfrecords", "train", "mixdb")
        tr_hdf5_names = os.listdir(tr_hdf5_dir)
        tr_path_list = [os.path.join(tr_hdf5_dir, i) for i in tr_hdf5_names]
        te_hdf5_path = os.path.join(workspace, "packed_features",
                                    "spectrogram", "test", "mixdb", "data.h5")
    else:
        tr_hdf5_dir = os.path.join(workspace, "tfrecords", "train",
                                   "mask_mixdb")
        tr_hdf5_names = os.listdir(tr_hdf5_dir)
        tr_path_list = [os.path.join(tr_hdf5_dir, i) for i in tr_hdf5_names]
        te_hdf5_path = os.path.join(workspace, "packed_features",
                                    "spectrogram", "test", "mask_mixdb",
                                    "data.h5")

    #(tr_x1, tr_y1) = pp_data.load_hdf5("workspace/packed_features/spectrogram/train/mixdb/data100000.h5")
    (te_x, te_y) = pp_data.load_hdf5(te_hdf5_path)
    t1 = time.time()
    scaler_path = os.path.join(workspace, "packed_features", "spectrogram",
                               "train", "mixdb", "scaler.p")
    scaler = pickle.load(open(scaler_path, 'rb'))
    te_x = pp_data.scale_on_3d(te_x, scaler)
    #tr_x1 = pp_data.scale_on_3d(tr_x1, scaler)
    if data_type == "DM":
        te_y = pp_data.scale_on_2d(te_y, scaler)
        tr_y1 = pp_data.scale_on_2d(tr_y1, scaler)
    print("Scale data time: %s s" % (time.time() - t1, ))
    # Directories for saving models and training stats
    if data_type == "DM":
        model_dir = os.path.join(workspace, "models", "elu_mixdb", "continue")
        stats_dir = os.path.join(workspace, "training_stats", "elu_mixdb",
                                 "continue")
    else:
        model_dir = os.path.join(workspace, "models", "mask_mixdb", "continue")
        stats_dir = os.path.join(workspace, "training_stats", "mask_mixdb",
                                 "continue")

        pp_data.create_folder(model_dir)
        pp_data.create_folder(stats_dir)
        # Print loss before training.

        batch_size = 1024 * 4
        #eval_tr_gen = DataGenerator(batch_size=batch_size, type='test', te_max_iter=100)
        eval_te_gen = DataGenerator(batch_size=batch_size,
                                    type='test',
                                    te_max_iter=100)
        #tr_loss = eval(model, eval_tr_gen, tr_x1, tr_y1)
        tr_loss = 0
        te_loss = eval(model, eval_te_gen, te_x, te_y)
        print("Iteration: %d, tr_loss: %f, te_loss: %f" %
              (iter, tr_loss, te_loss))
        # Save out training stats.
        stat_dict = {
            'iter': iter,
            'tr_loss': tr_loss,
            'te_loss': te_loss,
        }
        stat_path = os.path.join(stats_dir, "%diters.p" % iter)
        cPickle.dump(stat_dict,
                     open(stat_path, 'wb'),
                     protocol=cPickle.HIGHEST_PROTOCOL)
        # Train.
        sess = tf.Session()
        x, y = load_tfrecord(batch=batch_size,
                             repeat=100000,
                             data_path=tr_path_list)
        t1 = time.time()
        for count in range(1000000000):
            [tr_x, tr_y] = sess.run([x, y])
            loss = model.train_on_batch(tr_x, tr_y)
            iter += 1
            # Validate and save training stats.
            if iter % 1000 == 0:
                #tr_loss = eval(model, eval_tr_gen, tr_x1, tr_y1)
                te_loss = eval(model, eval_te_gen, te_x, te_y)
                print("Iteration: %d, tr_loss: %f, te_loss: %f" %
                      (iter, tr_loss, te_loss))
                # Save out training stats.
                stat_dict = {
                    'iter': iter,
                    'tr_loss': tr_loss,
                    'te_loss': te_loss,
                }
                stat_path = os.path.join(stats_dir, "%diters.p" % iter)
                cPickle.dump(stat_dict,
                             open(stat_path, 'wb'),
                             protocol=cPickle.HIGHEST_PROTOCOL)
            # Save model.
            if iter % 5000 == 0:
                model_path = os.path.join(model_dir, "md_%diters.h5" % iter)
                model.save(model_path)
                print("Saved model to %s" % model_path)
            if iter == 100001:
                break
        print("Training time: %s s" % (time.time() - t1, ))
コード例 #11
0
te_x = []
te_y = []

for i in h5_test_list:
    te_x_t, te_y_t = pp.load_hdf5(os.path.join(conf1.data_test_dir, i))
    te_x.append(te_x_t)
    te_y.append(te_y_t)

te_x = np.concatenate(te_x, axis=0)
te_y = np.concatenate(te_y, axis=0)

#scale test data
scaler = pickle.load(
    open(os.path.join(conf1.packed_feature_dir, 'test', 'scaler.p'), 'rb'))
te_x = pp.scale_on_3d(te_x, scaler)
te_y = pp.scale_on_2d(te_y, scaler)
print("Scale data time: %s s" % (time.time() - t1, ))

print("Load data time: %s s" % (time.time() - t1, ))

# conf.batch_size = 512
# print("%d iterations / epoch" % int(tr_x.shape[0] / conf1.batch_size))

tr_x, tr_y = pp.load_hdf5(os.path.join(conf1.data_train_dir, h5_train_list[0]))

# Debug plot.
# if False:
#     plt.matshow(tr_x[0: 1000, 0, :].T, origin='lower', aspect='auto', cmap='jet')
#     plt.show()
#     pause
コード例 #12
0
def predict_folder(input_file_folder: object, output_file_folder: object) -> object:
    # Load model.
    data_type = "test"
    model_path = os.path.join(conf1.model_dir, "md_%diters.h5" % conf1.iterations)
    model = load_model(model_path)

    # Load scaler.
    # if scale:
    scaler_path = os.path.join(conf1.packed_feature_dir, data_type, "scaler.p")
    scaler = pickle.load(open(scaler_path, 'rb'))

    # Load test data.
    # names = os.listdir(input_file_folder)

    names = [f for f in sorted(os.listdir(input_file_folder)) if f.startswith("mix")]

    mixed_all = []
    pred_all = []
    for (cnt, na) in enumerate(names):
        # Load feature.
        file_path = os.path.join(input_file_folder, na)
        (a, _) = pp.read_audio(file_path)
        mixed_complex = pp.calc_sp(a, 'complex')


        mixed_x = np.abs(mixed_complex)

        # Process data.
        n_pad = (conf1.n_concat - 1) / 2
        mixed_x = pp.pad_with_border(mixed_x, n_pad)
        mixed_x = pp.log_sp(mixed_x)
        # speech_x = dnn1_train.log_sp(speech_x)

        # Scale data.
        # if scale:
        mixed_x = pp.scale_on_2d(mixed_x, scaler)

        # Cut input spectrogram to 3D segments with n_concat.
        mixed_x_3d = pp.mat_2d_to_3d(mixed_x, agg_num=conf1.n_concat, hop=1)


        # Predict.
        pred = model.predict(mixed_x_3d)
        print(cnt, na)

        # Inverse scale.
        #if scale:
        mixed_x = pp.inverse_scale_on_2d(mixed_x, scaler)
        # speech_x = dnn1_train.inverse_scale_on_2d(speech_x, scaler)
        pred = pp.inverse_scale_on_2d(pred, scaler)

        # Debug plot.
        if visualize_plot:
            visualize(mixed_x, pred)

        mixed_all.append(mixed_complex)
        pred_all.append(real_to_complex(pred, mixed_complex))


        # Recover enhanced wav.
        pred_sp = np.exp(pred)
        s = recover_wav(pred_sp, mixed_complex, conf1.n_overlap, np.hamming)
        s *= np.sqrt((np.hamming(conf1.n_window) ** 2).sum())  # Scaler for compensate the amplitude
        # change after spectrogram and IFFT.

        # Write out enhanced wav.

        pp.create_folder(output_file_folder)
        audio_path = os.path.join(output_file_folder, "enh_%s" % na)
        pp.write_audio(audio_path, s, conf1.sample_rate)

    return mixed_all, pred_all
コード例 #13
0
def train(args):
    """Train the neural network. Write out model every several iterations. 
    
    Args:
      workspace: str, path of workspace. 
      tr_snr: float, training SNR. 
      te_snr: float, testing SNR. 
      lr: float, learning rate. 
    """
    print(args)
    workspace = args.workspace
    tr_snr = args.tr_snr
    te_snr = args.te_snr
    lr = args.lr

    # Load data.
    t1 = time.time()
    tr_hdf5_path = os.path.join(workspace, "packed_features", "spectrogram",
                                "train", "%ddb" % int(tr_snr), "data.h5")
    te_hdf5_path = os.path.join(workspace, "packed_features", "spectrogram",
                                "test", "%ddb" % int(te_snr), "data.h5")
    (tr_x, tr_y) = pp_data.load_hdf5(tr_hdf5_path)
    (te_x, te_y) = pp_data.load_hdf5(te_hdf5_path)
    print(tr_x.shape, tr_y.shape)
    print(te_x.shape, te_y.shape)
    print("Load data time: %s s" % (time.time() - t1, ))

    batch_size = 500
    print("%d iterations / epoch" % int(tr_x.shape[0] / batch_size))

    # Scale data.
    if True:
        t1 = time.time()
        scaler_path = os.path.join(workspace, "packed_features", "spectrogram",
                                   "train", "%ddb" % int(tr_snr), "scaler.p")
        scaler = pickle.load(open(scaler_path, 'rb'))
        tr_x = pp_data.scale_on_3d(tr_x, scaler)
        tr_y = pp_data.scale_on_2d(tr_y, scaler)
        te_x = pp_data.scale_on_3d(te_x, scaler)
        te_y = pp_data.scale_on_2d(te_y, scaler)
        print("Scale data time: %s s" % (time.time() - t1, ))

    # Debug plot.
    if False:
        plt.matshow(tr_x[0:1000, 0, :].T,
                    origin='lower',
                    aspect='auto',
                    cmap='jet')
        plt.show()
        pause

    # Build model
    (_, n_concat, n_freq) = tr_x.shape
    n_hid = 2048

    model = Sequential()
    model.add(Flatten(input_shape=(n_concat, n_freq)))
    model.add(Dense(n_hid, activation='relu'))
    model.add(Dropout(0.2))
    model.add(Dense(n_hid, activation='relu'))
    model.add(Dropout(0.2))
    model.add(Dense(n_hid, activation='relu'))
    model.add(Dropout(0.2))
    model.add(Dense(n_freq, activation='linear'))
    model.summary()

    model.compile(loss='mean_absolute_error', optimizer=Adam(lr=lr))

    # Data generator.
    tr_gen = DataGenerator(batch_size=batch_size, type='train')
    eval_te_gen = DataGenerator(batch_size=batch_size,
                                type='test',
                                te_max_iter=100)
    eval_tr_gen = DataGenerator(batch_size=batch_size,
                                type='test',
                                te_max_iter=100)

    # Directories for saving models and training stats
    model_dir = os.path.join(workspace, "models", "%ddb" % int(tr_snr))
    pp_data.create_folder(model_dir)

    stats_dir = os.path.join(workspace, "training_stats", "%ddb" % int(tr_snr))
    pp_data.create_folder(stats_dir)

    # Print loss before training.
    iter = 0
    tr_loss = eval(model, eval_tr_gen, tr_x, tr_y)
    te_loss = eval(model, eval_te_gen, te_x, te_y)
    print("Iteration: %d, tr_loss: %f, te_loss: %f" % (iter, tr_loss, te_loss))

    # Save out training stats.
    stat_dict = {
        'iter': iter,
        'tr_loss': tr_loss,
        'te_loss': te_loss,
    }
    stat_path = os.path.join(stats_dir, "%diters.p" % iter)
    cPickle.dump(stat_dict,
                 open(stat_path, 'wb'),
                 protocol=cPickle.HIGHEST_PROTOCOL)

    # Train.
    t1 = time.time()
    for (batch_x, batch_y) in tr_gen.generate(xs=[tr_x], ys=[tr_y]):
        loss = model.train_on_batch(batch_x, batch_y)
        iter += 1

        # Validate and save training stats.
        if iter % 1000 == 0:
            tr_loss = eval(model, eval_tr_gen, tr_x, tr_y)
            te_loss = eval(model, eval_te_gen, te_x, te_y)
            print("Iteration: %d, tr_loss: %f, te_loss: %f" %
                  (iter, tr_loss, te_loss))

            # Save out training stats.
            stat_dict = {
                'iter': iter,
                'tr_loss': tr_loss,
                'te_loss': te_loss,
            }
            stat_path = os.path.join(stats_dir, "%diters.p" % iter)
            cPickle.dump(stat_dict,
                         open(stat_path, 'wb'),
                         protocol=cPickle.HIGHEST_PROTOCOL)

        # Save model.
        if iter % 5000 == 0:
            model_path = os.path.join(model_dir, "md_%diters.h5" % iter)
            model.save(model_path)
            print("Saved model to %s" % model_path)

        if iter == 10001:
            break

    print("Training time: %s s" % (time.time() - t1, ))
コード例 #14
0
def train(args):
    """Train the neural network. Write out model every several iterations. 
    
    Args:
      workspace: str, path of workspace. 
      tr_snr: float, training SNR. 
      te_snr: float, testing SNR. 
      lr: float, learning rate. 
    """
    print(args)
    workspace = args.workspace
    model_name = args.model_name
    lr = args.lr
    tr_dir_name = args.tr_dir_name
    va_dir_name = args.va_dir_name
    iter_training = args.iteration
    dropout = args.dropout

    # Load data.
    t1 = time.time()
    tr_hdf5_path = os.path.join(workspace, "packed_features", "spectrogram",
                                "train", tr_dir_name, "data.h5")
    # va_hdf5_path = os.path.join(workspace, "packed_features", "spectrogram", "validation", va_dir_name, "data.h5")
    (tr_x, tr_y) = pp_data.load_hdf5(tr_hdf5_path)
    # (va_x, va_y) = pp_data.load_hdf5(va_hdf5_path)
    print(tr_x.shape, tr_y.shape)
    # print(va_x.shape, va_y.shape)
    print("Load data time: %s s" % (time.time() - t1, ))

    batch_size = 500
    print("%d iterations / epoch" % int(tr_x.shape[0] / batch_size))

    # Scale data.
    if True:
        t1 = time.time()
        scaler_path = os.path.join(workspace, "packed_features", "spectrogram",
                                   "train", tr_dir_name, "scaler.p")
        scaler = pickle.load(open(scaler_path, 'rb'))
        tr_x = pp_data.scale_on_3d(tr_x, scaler)
        tr_y = pp_data.scale_on_2d(tr_y, scaler)
        # va_x = pp_data.scale_on_3d(va_x, scaler)
        # va_y = pp_data.scale_on_2d(va_y, scaler)
        print("Scale data time: %s s" % (time.time() - t1, ))

    # Debug plot.
    if False:
        plt.matshow(tr_x[0:1000, 0, :].T,
                    origin='lower',
                    aspect='auto',
                    cmap='jet')
        plt.show()
        pause

    # Build model
    (_, n_concat, n_freq) = tr_x.shape
    n_hid = 2048

    with tf.Session() as sess:
        model = DNN(sess,
                    lr,
                    batch_size, (n_concat, n_freq),
                    n_freq,
                    dropouts=dropout,
                    training=True)
        model.build()
        sess.run(tf.global_variables_initializer())
        merge_op = tf.summary.merge_all()

        # Data generator.
        tr_gen = DataGenerator(batch_size=batch_size, type='train')
        # eval_te_gen = DataGenerator(batch_size=batch_size, type='test', te_max_iter=100)
        eval_tr_gen = DataGenerator(batch_size=batch_size,
                                    type='test',
                                    te_max_iter=100)

        # Directories for saving models and training stats
        model_dir = os.path.join(workspace, "models", model_name)
        pp_data.create_folder(model_dir)

        stats_dir = os.path.join(workspace, "training_stats", model_name)
        pp_data.create_folder(stats_dir)

        # Print loss before training.
        iter = 0
        tr_loss = eval(sess, model, eval_tr_gen, tr_x, tr_y)
        # te_loss = eval(model, eval_te_gen, te_x, te_y)
        # print("Iteration: %d, tr_loss: %f, te_loss: %f" % (iter, tr_loss, te_loss))
        print("Iteration: %d, tr_loss: %f" % (iter, tr_loss))

        # Save out training stats.
        stat_dict = {
            'iter': iter,
            'tr_loss': tr_loss,
        }
        # 'te_loss': te_loss,}
        stat_path = os.path.join(stats_dir, "%diters.p" % iter)
        pickle.dump(stat_dict,
                    open(stat_path, 'wb'),
                    protocol=pickle.HIGHEST_PROTOCOL)

        # Train.
        t1 = time.time()
        for (batch_x, batch_y) in tr_gen.generate(xs=[tr_x], ys=[tr_y]):

            feed_dict = {model.x_noisy: batch_x, model.y_clean: batch_y}
            _, loss, summary_str = sess.run(
                [model.optimizer, model.loss, merge_op], feed_dict=feed_dict)

            iter += 1

            # Validate and save training stats.
            if iter % 1000 == 0:
                tr_loss = eval(sess, model, eval_tr_gen, tr_x, tr_y)
                # te_loss = eval(model, eval_te_gen, te_x, te_y)
                print("Iteration: %d, tr_loss: %f" % (iter, tr_loss))
                # print("Iteration: %d, tr_loss: %f, te_loss: %f" % (iter, tr_loss, te_loss))

                # Save out training stats.
                stat_dict = {
                    'iter': iter,
                    'tr_loss': tr_loss,
                }
                # 'te_loss': te_loss, }
                stat_path = os.path.join(stats_dir, "%diters.p" % iter)
                pickle.dump(stat_dict,
                            open(stat_path, 'wb'),
                            protocol=pickle.HIGHEST_PROTOCOL)

            # Save model.
            if iter % 5000 == 0:
                ckpt_file_path = os.path.join(model_dir, model_name)
                # if os.path.isdir(model_dir) is False:
                #       os.makedirs(model_dir)
                tf.train.Saver().save(sess,
                                      ckpt_file_path,
                                      write_meta_graph=True)
                print("Saved model to %s" % ckpt_file_path)

            if iter == iter_training + 1:
                break

        print("Training time: %s s" % (time.time() - t1, ))
コード例 #15
0
def train(args):
    """Train the neural network. Write out model every several iterations. 
    
    Args:
      workspace: str, path of workspace. 
      tr_snr: float, training SNR. 
      te_snr: float, testing SNR. 
      lr: float, learning rate. 
    """
    class MetricsHistory(Callback):
        def on_epoch_end(self, epoch, logs={}):
            file_logger.write([str(epoch),
                           str(logs['loss']),
                           str(logs['val_loss'])
                           ])
    
    
    
    print(args)
    workspace = args.workspace

    #tr_snr = args.tr_snr
    #te_snr = args.te_snr
    lr = args.lr
    #TF = args.TF
    model_name = args.model_name
    #model_save_dir = os.path.join(args.workspace, 'saved_models')
    
    # Load data
    t1 = time.time()
    print("Loading the train and vallidation dataset")
    tr_hdf5_path = os.path.join(workspace, "packed_features", "train", "mag.h5")
    te_hdf5_path = os.path.join(workspace, "packed_features", "val", "mag.h5")
    (tr_x, tr_y) = pp_data.load_hdf5(tr_hdf5_path)
    (te_x, te_y) = pp_data.load_hdf5(te_hdf5_path)
    
    print('train_x shape:')
    print(tr_x.shape, tr_y.shape)
    print('test_x shape:')
    print(te_x.shape, te_y.shape)
    print("Load data time: %f s" % (time.time() - t1))
    print('\n')
    
    # Scale data
    if True:
        print("Scaling train and test dataset. This will take some time, please wait patiently...")
        t1 = time.time()
        scaler_path = os.path.join(workspace, "packed_features", "train", "mag_scaler.p")
        scaler = pickle.load(open(scaler_path, 'rb'))
        tr_x = pp_data.scale_on_3d(tr_x, scaler)
        tr_y = pp_data.scale_on_2d(tr_y, scaler)
        te_x = pp_data.scale_on_3d(te_x, scaler)
        te_y = pp_data.scale_on_2d(te_y, scaler)
        print("Scale data time: %f s" % (time.time() - t1))
        
    # Debug plot. 
    if False:
        plt.matshow(tr_x[0 : 1000, 0, :].T, origin='lower', aspect='auto', cmap='jet')
        plt.show()
        #time.sleep(secs)
        os.system("pause")
        
    # Build model
    batch_size = 150
    epoch = 100
    print("The neural networks you have chosed is %s" % model_name)
    print("The training batch is set to %d and the %s will be training for at most %d epoches" % (batch_size, model_name.upper(), epoch))
    print("======iteration of one epoch======" )
    iter_each_epoch = int(tr_x.shape[0] / batch_size)
    #val_each_epoch = int(te_x.shape[0] / batch_size)
    #print("There are %d iterations / epoch" % int(tr_x.shape[0] / batch_size))
    print("There are %d iterations / epoch" % iter_each_epoch)
    
    log_save_dir = os.path.join(workspace, 'log')
    if not os.path.isdir(log_save_dir):
        os.makedirs(log_save_dir)
    log_path = os.path.join(log_save_dir, 'out_{}.csv'.format(model_name))
    #log_path = os.path.join(log_save_dir, 'out_%ddb_%s.csv' %(int(snr[0]), model_name))
    file_logger = FileLogger(log_path, ['epoch', 'train_loss', 'val_loss'])
    
    (_, n_concat, n_freq) = tr_x.shape
    #temp_tr_x = tr_x[:, 3, :][:, np.newaxis, :]
    #print(temp_tr_x.shape)
    #np.axis
    n_hid = 2048
    
    #data_gen = DataGenerator(batch_size=batch_size, type='train')
    #tr_gen = data_gen.generate(xs=[tr_x], ys=[tr_y])
    #te_gen = data_gen.generate(xs=[te_x], ys=[te_y])
    #temp_tr_x = tr_gen[:, 3, :][:, np.newaxis, :]
    
    
    '''
    model = Sequential()
    model.add(Flatten(input_shape=(n_concat, n_freq)))
    model.add(BatchNormalization())
    model.add(Dense(n_hid, activation='relu', kernel_regularizer=regularizers.l2(l=0.0001)))
    model.add(Dropout(0.2))
    model.add(BatchNormalization())
    model.add(Dense(n_hid, activation='relu', kernel_regularizer=regularizers.l2(l=0.0001)))
    model.add(Dropout(0.2))
    model.add(BatchNormalization())
    model.add(Dense(n_hid, activation='relu', kernel_regularizer=regularizers.l2(l=0.0001)))
    model.add(Dropout(0.2))
    model.add(Dense(n_freq, activation='linear'))
    #model.summary()
    '''
    
    
    print('Model selected:', model_name.lower())
    if model_name == 'dnn':
        model = dnn(n_hid, n_concat, n_freq)
    
    elif model_name == 'sdnn1':
        model = sdnn1(n_hid, n_concat, n_freq)
        
    
    elif model_name == 'sdnn2':
        model = sdnn2(n_hid, n_concat, n_freq)
    
    elif model_name == 'sdnn3':
        model = sdnn3(n_hid, n_concat, n_freq)
    
    elif model_name == 'fcn':
        model = fcn(n_concat, n_freq)
        
    elif model_name == 'fcn1':
        model = fcn1(n_concat, n_freq)
        
    elif model_name == 'fcn1':
        model = fcn1_re(n_concat, n_freq)
    
    elif model_name == 'fcn2':
        model = fcn2(n_concat, n_freq)
        
    elif model_name == 'fcn3':
        model = fcn3(n_concat, n_freq)
        
    elif model_name == 'fcn4':
        model = fcn4(n_concat, n_freq)
        
    elif model_name == 'm_vgg':
        model = m_vgg(n_concat, n_freq)
        
    elif model_name == 'm_vgg1':
        model = m_vgg1(n_concat, n_freq)
        
    elif model_name == 'm_vgg2':
        model = m_vgg2(n_concat, n_freq)
        
    elif model_name == 'm_vgg3':
        model = m_vgg3(n_concat, n_freq)
        
    elif model_name == 'm_vgg4':
        model = m_vgg3(n_concat, n_freq)
        
    elif model_name == 'CapsNet':
        model = CapsNet(n_concat, n_freq, 3)
        
    elif model_name == 'brnn' :
        recur_layers = 7
        unit = 256
        output_dim = n_freq
        model = brnn(n_concat, n_freq, unit, recur_layers, output_dim)
        
    elif model_name == 'rnn' :
        output_dim = n_freq
        model = rnn(n_concat, n_freq, output_dim)
        
    elif model_name == 'tcn' :
        input_dim = n_freq
        model = tcn(n_concat, input_dim)
        
    if model is None:
        exit('Please choose a valid model: [dnn, sdnn, sdnn1, cnn, scnn1]')
        
   
    #mean_squared_error
    model.compile(loss = 'mean_squared_error',
                  optimizer=Adam(lr=lr))
    
    print(model.summary())
    #plot model
    #plot_model(model, to_file=args.save_dir+'/model.png', show_shapes=True)
    #plot_model(model, to_file='%s/%s_model.png' % (log_save_dir, model_name), show_shapes=True)
    # Save model and weights
    model_save_dir = os.path.join(workspace, 'saved_models', "%s" % model_name)
    model_save_name = "weights-checkpoint-{epoch:02d}-{val_loss:.2f}.h5"
    if not os.path.isdir(model_save_dir):
        os.makedirs(model_save_dir)
    model_path = os.path.join(model_save_dir, model_save_name)
    checkpoint = ModelCheckpoint(model_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min')
    print('Saved trained model at %s' % model_save_dir)
    
    
    #reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=4, min_lr=0.00001, verbose=1)
    lr_decay = LearningRateScheduler(schedule=lambda epoch: lr * (0.9 ** epoch))
    metrics_history = MetricsHistory()
    
    hist = model.fit(x=tr_x,
                     y=tr_y,
                     batch_size=batch_size,
                     epochs=epoch,
                     verbose=1,
                     shuffle=True,
                     validation_data=(te_x, te_y),
                     #validation_split=0.1,
                     callbacks=[metrics_history, checkpoint, lr_decay])
    '''
    hist = model.fit_generator(tr_gen, 
                               steps_per_epoch=iter_each_epoch, 
                               epochs=epoch, 
                               verbose=1, 
                               validation_data=te_gen, 
                               validation_steps=val_each_epoch, 
                               callbacks=[metrics_history, checkpoint, reduce_lr])

    '''
    
    print(hist.history.keys())
    
    # list all data in history
    #print(hist.history.keys())
    '''
    # summarize history for accuracy
    plt.plot(hist.history['acc'])
    plt.plot(hist.history['val_acc'])
    plt.title('model accuracy')
    plt.ylabel('accuracy')
    plt.xlabel('epoch')
    plt.legend(['train', 'test'], loc='upper left')
    plt.show()
    '''
    # summarize history for loss
    model_png = "train_test_loss"
    loss_fig_dir = os.path.join(log_save_dir, '%s_%s.png' % (model_name, model_png))
    plt.plot(hist.history['loss'])
    plt.plot(hist.history['val_loss'])
    plt.title('model loss')
    plt.ylabel('loss')
    plt.xlabel('epoch')
    plt.legend(['train', 'val'], loc='upper right')
    plt.savefig(loss_fig_dir)
    #plt.show()
    
    
    
    '''
    fig = plt.gcf()
    plt.show()
    fig.savefig('tessstttyyy.png', dpi=100)
    '''
    
    file_logger.close()
    
    
    
    '''
    # Data generator. 
    tr_gen = DataGenerator(batch_size=batch_size, type='train')
    eval_te_gen = DataGenerator(batch_size=batch_size, type='test', te_max_iter=100)
    eval_tr_gen = DataGenerator(batch_size=batch_size, type='test', te_max_iter=100)
    
    # Directories for saving models and training stats
    model_dir = os.path.join(workspace, "models", "%ddb" % int(tr_snr))
    pp_data.create_folder(model_dir)
    
    stats_dir = os.path.join(workspace, "training_stats", "%ddb" % int(tr_snr))
    pp_data.create_folder(stats_dir)
    
    # Print loss before training. 
    iter = 0
    tr_loss = eval(model, eval_tr_gen, tr_x, tr_y)
    te_loss = eval(model, eval_te_gen, te_x, te_y)
    print("Iteration: %d, tr_loss: %f, te_loss: %f" % (iter, tr_loss, te_loss))
    
    # Save out training stats. 
    stat_dict = {'iter': iter, 
                    'tr_loss': tr_loss, 
                    'te_loss': te_loss, }
    stat_path = os.path.join(stats_dir, "%diters.p" % iter)
    cPickle.dump(stat_dict, open(stat_path, 'wb'), protocol=cPickle.HIGHEST_PROTOCOL)
    
    # Train. 
    t1 = time.time()
    for (batch_x, batch_y) in tr_gen.generate(xs=[tr_x], ys=[tr_y]):
        #loss = model.train_on_batch(batch_x, batch_y)
 	if iter % 2000 == 0:
            lr *= 0.1
        model.train_on_batch(batch_x, batch_y)
        iter += 1
        
        
        # Validate and save training stats. 
        if iter % 1000 == 0:
            tr_loss = eval(model, eval_tr_gen, tr_x, tr_y)
            te_loss = eval(model, eval_te_gen, te_x, te_y)
            print("Iteration: %d, tr_loss: %f, te_loss: %f" % (iter, tr_loss, te_loss))
            
            # Save out training stats. 
            stat_dict = {'iter': iter, 
                         'tr_loss': tr_loss, 
                         'te_loss': te_loss, }
            stat_path = os.path.join(stats_dir, "%diters.p" % iter)
            cPickle.dump(stat_dict, open(stat_path, 'wb'), protocol=cPickle.HIGHEST_PROTOCOL)
            
        # Save model. 
        if iter % 5000 == 0:
            model_path = os.path.join(model_dir, "md_%diters.h5" % iter)
            model.save(model_path)
            print("Saved model to %s" % model_path)
        
        if iter == 10001:
            break
     '''     
    print("Training time: %s s" % (time.time() - t1,))
コード例 #16
0
def inference(args):
    """Inference all test data, write out recovered wavs to disk. 
    
    Args:
      workspace: str, path of workspace. 
      tr_snr: float, training SNR. 
      te_snr: float, testing SNR. 
      n_concat: int, number of frames to concatenta, should equal to n_concat 
          in the training stage. 
      iter: int, iteration of model to load. 
      visualize: bool, plot enhanced spectrogram for debug. 
    """
    print(args)
    workspace = args.workspace
    #tr_snr = args.tr_snr
    #te_snr = args.te_snr
    n_concat = args.n_concat
    #iter = args.iteration
    TF = args.TF
    model_name = args.model_name
    
    n_window = cfg.n_window
    n_overlap = cfg.n_overlap
    #snr = cfg.SNR
    n_hop = int(n_window-n_overlap)
    fs = cfg.sample_rate
    scale = True
    
    # Load model
    t1 = time.time()
    #model_path = os.path.join(workspace, "saved_models", "%s" % model_name, "weights-checkpoint-25-0.41.h5")
    mag_model_root = os.path.join(workspace, "saved_models", "%s" % model_name )
    #model_root = '/home/szuer/CI_DNN/workspace_16kHz/cis_strategy/noise10/mixture/saved_models/0/sdnn1'
    mag_model_files = find_models(mag_model_root)
    epoch_num = []
    for i in range(len(mag_model_files)):
        epoch_num.append(int(mag_model_files[i].split("/")[-1].split('-')[2]))
    mag_model_index = epoch_num.index(max(epoch_num))
    mag_model_path = mag_model_files[mag_model_index]
    print("The selected model path is %s :" % mag_model_path)
    
    mag_model = load_model(mag_model_path)
    
    '''
    # loading phase model
    phase_model_root = os.path.join(workspace, "phase_saved_models", "%s" % model_name )
    #model_root = '/home/szuer/CI_DNN/workspace_16kHz/cis_strategy/noise10/mixture/saved_models/0/sdnn1'
    phase_model_files = find_models(phase_model_root)
    epoch_num1 = []
    for i in range(len(phase_model_files)):
        epoch_num1.append(int(phase_model_files[i].split("/")[-1].split('-')[2]))
    phase_model_index = epoch_num1.index(max(epoch_num1))
    phase_model_path = phase_model_files[phase_model_index]
    print("The selected model path is %s :" % phase_model_path)
    
    phase_model = load_model(phase_model_path)
    '''
    # Load scaler
    mag_scaler_path = os.path.join(workspace, "packed_features", "train", "mag_scaler.p")
    mag_scaler = pickle.load(open(mag_scaler_path, 'rb'))
    
    #phase_scaler_path = os.path.join(workspace, "packed_features", "train", "phase_scaler.p")
    #phase_scaler = pickle.load(open(phase_scaler_path, 'rb'))
    
    # Load test data. 
    feat_dir = os.path.join(workspace, "features", "test")
    names = os.listdir(feat_dir)

    for (cnt, na) in enumerate(names):
        # Load feature. 
        feat_path = os.path.join(feat_dir, na)
        data = cPickle.load(open(feat_path, 'rb'))
        [mixed_cmplx_x, speech_cmplx_x] = data
        n_pad = (n_concat - 1) / 2
        
        if TF == "spectrogram":
            mixed_x = np.abs(mixed_cmplx_x)
            # mixed_phase = np.angle(mixed_cmplx_x)
            # Process data. 
            #n_pad = (n_concat - 1) / 2
            mixed_x = pp_data.pad_with_border(mixed_x, n_pad)
            mixed_x = pp_data.log_sp(mixed_x)
            # mixed_phase = pp_data.pad_with_border(mixed_phase, n_pad)
            
            # speech_x = pp_data.log_sp(np.abs(speech_cmplx_x))
            #speech_phase = np.angle(speech_cmplx_x)

            
        else:
            raise Exception("TF must be spectrogram, timedomain or fftmagnitude!")
            
        # Scale data. 
        if scale:
            mixed_x = pp_data.scale_on_2d(mixed_x, mag_scaler)
            # speech_x = pp_data.scale_on_2d(speech_x, mag_scaler)
            #mixed_phase = pp_data.scale_on_2d(mixed_phase, phase_scaler)
            #speech_phase = pp_data.scale_on_2d(speech_phase, phase_scaler)
        
        # Cut input spectrogram to 3D segments with n_concat. 
        #mixed_x_3d = pp_data.mat_2d_to_3d(mixed_x, agg_num=n_concat, hop=1)
        mixed_x_3d = pp_data.mat_2d_to_3d(mixed_x, agg_num=n_concat, hop=1)
        #mixed_phase_3d = pp_data.mat_2d_to_3d(mixed_phase, agg_num=n_concat, hop=1)
        #print("loading data time: %s s" % (time.time() - t1,))
        '''
        layer_1 = K.function([model.layers[0].input], [model.layers[2].output])#第一个 model.layers[0],不修改,表示输入数据;第二个model.layers[you wanted],修改为你需要输出的层数的编号
        f1 = layer_1([mixed_x_3d])[0]#只修改inpu_image
        #第一层卷积后的特征图展示,输出是(1,149,149,32),(样本个数,特征图尺寸长,特征图尺寸宽,特征图个数)
        for _ in range(12):
            show_img = f1[1, :, :, _]
            show_img.shape = [1, 257]
            plt.subplot(3, 4, _ + 1)
            plt.imshow(show_img.T, cmap='gray')
            plt.axis('off')
        plt.show()
        '''
        # Predict. 
        t2 = time.time()
        mag_pred = mag_model.predict(mixed_x_3d)
        #phase_pred = phase_model.predict(mixed_phase_3d)
        print("model predicts %d utterance : %s successfully" % (cnt, na))
        #print(pred)
        
        # Inverse scale. 
        if scale:
            # mixed_x = pp_data.inverse_scale_on_2d(mixed_x, mag_scaler)
            # speech_x = pp_data.inverse_scale_on_2d(speech_x, mag_scaler)
            mag_pred = pp_data.inverse_scale_on_2d(mag_pred, mag_scaler)
            
            #mixed_phase = pp_data.inverse_scale_on_2d(mixed_phase, phase_scaler)
            #speech_phase = pp_data.inverse_scale_on_2d(speech_phase, phase_scaler)
            #phase_pred = pp_data.inverse_scale_on_2d(phase_pred, phase_scaler)
        
       
                    

        # Recover enhanced wav. 
        #pred_sp = np.exp(pred)
        if TF == "spectrogram":
            pred_sp = (10**(mag_pred/10))-1e-10
            #pred_ph = np.exp(1j * phase_pred)
            '''
            R = np.multiply(pred_sp, pred_ph)
            result = librosa.istft(R.T,
                                   hop_length=n_hop,
                                   win_length=cfg.n_window,
                                   window=scipy.signal.hamming, center=False)
            result /= abs(result).max()
            y_out = result*0.8'''
            #s = recover_wav(pred_sp, mixed_cmplx_x, n_overlap, np.hamming)
            #s *= np.sqrt((np.hamming(n_window)**2).sum())   # Scaler for compensate the amplitude 
            s = spectra_to_wav(pred_sp, mixed_cmplx_x, n_window, n_hop, 'hamming')
            
        # Write out enhanced wav. 
        out_path = os.path.join(workspace, "enh_flipphase", "test", "%s" % model_name, "{}_fft_dnn_map.wav".format(na.split('.')[0]))
        pp_data.create_folder(os.path.dirname(out_path))
        pp_data.write_audio(out_path, s, fs)
        print("predict an utterance time: %s s" % (time.time() - t2,))
        
    print("total test time: %s s" % (time.time() - t1,))    
コード例 #17
0
def inference1111(args):
    """Inference all test data, write out recovered wavs to disk. 
    
    Args:
      workspace: str, path of workspace. 
      tr_snr: float, training SNR. 
      te_snr: float, testing SNR. 
      n_concat: int, number of frames to concatenta, should equal to n_concat 
          in the training stage. 
      iter: int, iteration of model to load. 
      visualize: bool, plot enhanced spectrogram for debug. 
    """
    print(args)
    workspace = args.workspace
    #tr_snr = args.tr_snr
    #te_snr = args.te_snr
    n_concat = args.n_concat
    #iter = args.iteration
    TF = args.TF
    model_name = args.model_name
    
    n_window = cfg.n_window
    n_overlap = cfg.n_overlap
    #snr = cfg.SNR
    n_hop = int(n_window-n_overlap)
    fs = cfg.sample_rate
    scale = True
    
    # Load model
    t1 = time.time()
    #model_path = os.path.join(workspace, "saved_models", "%s" % model_name, "weights-checkpoint-25-0.41.h5")
    model_root = os.path.join(workspace, "saved_models", "%s" % model_name )
    #model_root = '/home/szuer/CI_DNN/workspace_16kHz/cis_strategy/noise10/mixture/saved_models/0/sdnn1'
    model_files = find_models(model_root)
    epoch_num = []
    for i in range(len(model_files)):
        epoch_num.append(int(model_files[i].split("/")[-1].split('-')[2]))
    model_index = epoch_num.index(max(epoch_num))
    model_path = model_files[model_index]
    print("The selected model path is %s :" % model_path)
    
    model = load_model(model_path)
    
    # Load scaler
    scaler_path = os.path.join(workspace, "packed_features", "train", "scaler.p")
    scaler = pickle.load(open(scaler_path, 'rb'))
    
    # Load test data. 
    feat_dir = os.path.join(workspace, "features", "test")
    names = os.listdir(feat_dir)

    for (cnt, na) in enumerate(names):
        # Load feature. 
        feat_path = os.path.join(feat_dir, na)
        data = cPickle.load(open(feat_path, 'rb'))
        [mixed_cmplx_x, speech_x, na] = data
        n_pad = (n_concat - 1) / 2
        
        if TF == "spectrogram":
            mixed_x = np.abs(mixed_cmplx_x)
        
            # Process data. 
            #n_pad = (n_concat - 1) / 2
            mixed_x = pp_data.pad_with_border(mixed_x, n_pad)
            mixed_x = pp_data.log_sp(mixed_x)
            speech_x = pp_data.log_sp(speech_x)
            
        elif TF == "timedomain":
            #n_pad = (n_concat - 1) / 2
            mixed_x = pp_data.pad_with_border(mixed_cmplx_x, n_pad)
            
        elif TF == "fftmagnitude":
            #n_pad = (n_concat - 1) / 2
            mixed_x = np.abs(mixed_cmplx_x)
            mixed_x = pp_data.pad_with_border(mixed_x, n_pad)
            
        else:
            raise Exception("TF must be spectrogram, timedomain or fftmagnitude!")
            
        # Scale data. 
        if scale:
            mixed_x = pp_data.scale_on_2d(mixed_x, scaler)
            speech_x = pp_data.scale_on_2d(speech_x, scaler)
        
        # Cut input spectrogram to 3D segments with n_concat. 
        #mixed_x_3d = pp_data.mat_2d_to_3d(mixed_x, agg_num=n_concat, hop=1)
        mixed_x_3d = pp_data.mat_2d_to_3d(mixed_x, agg_num=n_concat, hop=1)
        #print("loading data time: %s s" % (time.time() - t1,))
        '''
        layer_1 = K.function([model.layers[0].input], [model.layers[2].output])#第一个 model.layers[0],不修改,表示输入数据;第二个model.layers[you wanted],修改为你需要输出的层数的编号
        f1 = layer_1([mixed_x_3d])[0]#只修改inpu_image
        #第一层卷积后的特征图展示,输出是(1,149,149,32),(样本个数,特征图尺寸长,特征图尺寸宽,特征图个数)
        for _ in range(12):
            show_img = f1[1, :, :, _]
            show_img.shape = [1, 257]
            plt.subplot(3, 4, _ + 1)
            plt.imshow(show_img.T, cmap='gray')
            plt.axis('off')
        plt.show()
        '''
        # Predict. 
        t2 = time.time()
        pred = model.predict(mixed_x_3d)
        print("model predicts %d utterance : %s successfully" % (cnt, na))
        #print(pred)
        
        # Inverse scale. 
        if scale:
            mixed_x = pp_data.inverse_scale_on_2d(mixed_x, scaler)
            speech_x = pp_data.inverse_scale_on_2d(speech_x, scaler)
            pred = pp_data.inverse_scale_on_2d(pred, scaler)
        
        #(frames, frame_length) = pred.shape
        #print("pred domensions %d and %d : " % (frames, frame_length))
        # Debug plot. 
        if args.visualize:
            if TF == "spectrogram":
                fig, axs = plt.subplots(3,1, sharex=False)
                axs[0].matshow(mixed_x.T, origin='lower', aspect='auto', cmap='jet')
                axs[1].matshow(speech_x.T, origin='lower', aspect='auto', cmap='jet')
                axs[2].matshow(pred.T, origin='lower', aspect='auto', cmap='jet')
                axs[0].set_title("%ddb mixture log spectrogram" % int(te_snr))
                axs[1].set_title("Clean speech log spectrogram")
                axs[2].set_title("Enhanced speech log spectrogram")
                for j1 in xrange(3):
                    axs[j1].xaxis.tick_bottom()
                    plt.tight_layout()
                    plt.savefig('debug_model_spectra.png')
                    plt.show()
            elif TF == "timedomain":
                fig, axs = plt.subplots(3,1, sharex=False)
                axs[0].matshow(mixed_x.T, origin='lower', aspect='auto', cmap='jet')
                axs[1].matshow(speech_x.T, origin='lower', aspect='auto', cmap='jet')
                axs[2].matshow(pred.T, origin='lower', aspect='auto', cmap='jet')
                axs[0].set_title("%ddb mixture time domain" % int(te_snr))
                axs[1].set_title("Clean speech time domain")
                axs[2].set_title("Enhanced speech time domain")
                for j1 in xrange(3):
                    axs[j1].xaxis.tick_bottom()
                    plt.tight_layout()
                    plt.savefig('debug model_time.png')
                    plt.show()
            else:
                raise Exception("TF must be spectrogram or timedomain!")
                    

        # Recover enhanced wav. 
        #pred_sp = np.exp(pred)
        if TF == "spectrogram":
            pred_sp = (10**(pred/20))-1e-10
            #s = recover_wav(pred_sp, mixed_cmplx_x, n_overlap, np.hamming)
            #s *= np.sqrt((np.hamming(n_window)**2).sum())   # Scaler for compensate the amplitude 
            s = spectra_to_wav(pred_sp, mixed_cmplx_x, n_window, n_hop, 'hamming')
                                                        # change after spectrogram and IFFT. 
        elif TF == "timedomain":
            s = time_recover_wav(pred, n_window, n_hop, 'hamming')
            #s *= np.sqrt((np.hamming(n_window)**2).sum())
            
        elif TF == "fftmagnitude":
            #n_pad = (n_concat - 1) / 2
            s = spectra_to_wav(pred, mixed_cmplx_x, n_window, n_hop, 'hamming')
            
        else:
            raise Exception("TF must be spectrogram timedomain or fftmagnitude!")
            
        # Write out enhanced wav. 
        out_path = os.path.join(workspace, "enh_wavs", "test", "%s" % model_name, "%s.wav" % na)
        pp_data.create_folder(os.path.dirname(out_path))
        pp_data.write_audio(out_path, s, fs)
        print("predict an utterance time: %s s" % (time.time() - t2,))
        
    print("total test time: %s s" % (time.time() - t1,))
コード例 #18
0
def train(args):
    """Train the neural network. Write out model every several iterations. 
    
    Args:
      workspace: str, path of workspace. 
      tr_snr: float, training SNR. 
      te_snr: float, testing SNR. 
      lr: float, learning rate. 
    """
    print(args)
    workspace = args.workspace
    tr_snr = args.tr_snr
    te_snr = args.te_snr
    lr = args.lr
    iteration = args.iter

    # Load data. 
    t1 = time.time()
    tr_hdf5_path = os.path.join(workspace, "packed_features", "spectrogram", "train", "%ddb" % int(tr_snr), "data.h5")
    te_hdf5_path = os.path.join(workspace, "packed_features", "spectrogram", "test", "%ddb" % int(te_snr), "data.h5")
    tr_adapt_utt_path = os.path.join(workspace, "adaptive_utterance", "train", "adaptive_utterance_spec.p")
    te_adapt_utt_path = os.path.join(workspace, "adaptive_utterance", "test", "adaptive_utterance_spec.p")
    tr_adapt_utt = cPickle.load(open(tr_adapt_utt_path, 'rb'))
    te_adapt_utt = cPickle.load(open(te_adapt_utt_path, 'rb'))
    tr_adapt_utt_len_path = os.path.join(workspace, "adaptive_utterance", "train", "adaptive_utterance_max_len.p")
    te_adapt_utt_len_path = os.path.join(workspace, "adaptive_utterance", "test", "adaptive_utterance_max_len.p")
    tr_adapt_utt_len = cPickle.load(open(tr_adapt_utt_len_path, 'rb'))
    te_adapt_utt_len = cPickle.load(open(te_adapt_utt_len_path, 'rb'))
    max_len = max(tr_adapt_utt_len, te_adapt_utt_len)
    (tr_x1, tr_x2, tr_y1, tr_y2, tr_name) = pp_data.load_hdf5(tr_hdf5_path)
    (te_x1, te_x2, te_y1, te_y2, te_name) = pp_data.load_hdf5(te_hdf5_path)
    print(tr_x1.shape, tr_y1.shape, tr_x2.shape, tr_y2.shape)
    print(te_x1.shape, te_y1.shape, te_x2.shape, te_y2.shape)
    print("Load data time: %s s" % (time.time() - t1,))

    batch_size = 500
    print("%d iterations / epoch" % int(tr_x1.shape[0] / batch_size))

    # Scale data. 
    if not True:
        t1 = time.time()
        scaler_path = os.path.join(workspace, "packed_features", "spectrogram", "train", "%ddb" % int(tr_snr),
                                   "scaler.p")
        scaler = pickle.load(open(scaler_path, 'rb'))
        tr_x1 = pp_data.scale_on_3d(tr_x1, scaler)
        tr_y1 = pp_data.scale_on_2d(tr_y1, scaler)
        te_x1 = pp_data.scale_on_3d(te_x1, scaler)
        te_y1 = pp_data.scale_on_2d(te_y1, scaler)
        tr_x2 = pp_data.scale_on_2d(tr_x2, scaler)
        tr_y2 = pp_data.scale_on_2d(tr_y2, scaler)
        te_x2 = pp_data.scale_on_2d(te_x2, scaler)
        te_y2 = pp_data.scale_on_2d(te_y2, scaler)
        print("Scale data time: %s s" % (time.time() - t1,))

    # Debug plot. 
    if False:
        plt.matshow(tr_x[0: 1000, 0, :].T, origin='lower', aspect='auto', cmap='jet')
        plt.show()
        pause

    # Build model
    (_, n_concat, n_freq) = tr_x1.shape
    n_hid = 2048
    input_dim1 = (257 + 40 + 30) * 2
    input_dim2 = (257 + 40 + 30)
    out_dim1 = (257 + 40 + 30) * 2
    out_dim1_irm = 257 + 40 + 64
    out_dim2 = (257 + 40 + 30)
    out_dim2_irm = (257 + 40 + 64)
    num_factorize = 30

    def multiplication(pair_tensors):
        '''
        :param pair_tensors: x: (num_factorize,)
                            y: (num_factorize, n_hid)
        :return: (n_hid,) sum(x[i]*y[i,:],axis=1)
        '''
        x, y = pair_tensors
        return K.sum(tf.multiply(y, K.expand_dims(x, -1)), axis=1)

    adapt_input = Input(shape=(None,), name='adapt_input')
    layer = Reshape((-1, 257), name='reshape')(adapt_input)
    layer = Dense(512, activation='relu', name='adapt_dense1')(layer)
    layer = Dense(512, activation='relu', name='adapt_dense2')(layer)
    layer = Dense(num_factorize, activation='softmax', name='adapt_out')(layer)
    alpha = Lambda(lambda x: K.sum(x, axis=1), output_shape=(num_factorize,), name='sequence_sum')(layer)
    input1 = Input(shape=(n_concat, input_dim1), name='input1')
    layer = Flatten(name='flatten')(input1)
    layer = Dense(n_hid * num_factorize, name='dense0')(layer)
    layer = Reshape((num_factorize, n_hid), name='reshape2')(layer)
    layer = Lambda(multiplication, name='multiply')([alpha, layer])
    layer = Dense(n_hid, activation='relu', name='dense1')(layer)
    layer = Dropout(0.2)(layer)
    layer = Dense(n_hid, activation='relu', name='dense2')(layer)
    layer = Dropout(0.2)(layer)
    partial_out1 = Dense(out_dim1, name='1_out_linear')(layer)
    partial_out1_irm = Dense(out_dim1_irm, name='1_out_irm', activation='sigmoid')(layer)
    out1 = concatenate([partial_out1, partial_out1_irm], name='out1')
    input2 = Input(shape=(input_dim2,), name='input2')
    layer = concatenate([input2, out1], name='merge')
    layer = Dense(n_hid, activation='relu', name='dense3')(layer)
    layer = Dropout(0.2)(layer)
    layer = Dense(n_hid, activation='relu', name='dense4')(layer)
    layer = Dropout(0.2)(layer)
    partial_out2 = Dense(out_dim2, name='2_out_linear')(layer)
    partial_out2_irm = Dense(out_dim2_irm, name='2_out_irm', activation='sigmoid')(layer)
    out2 = concatenate([partial_out2, partial_out2_irm], name='out2')
    model = Model(inputs=[input1, input2, adapt_input], outputs=[out1, out2])

    model.summary()
    sys.stdout.flush()
    model.compile(loss='mean_absolute_error',
                  optimizer=Adam(lr=lr, epsilon=1e-03))
    # Data generator.
    tr_gen = DataGenerator(batch_size=batch_size, type='train', max_len=max_len)
    eval_te_gen = DataGenerator(batch_size=batch_size, type='test', te_max_iter=100, max_len=max_len)
    eval_tr_gen = DataGenerator(batch_size=batch_size, type='test', te_max_iter=100, max_len=max_len)

    # Directories for saving models and training stats
    model_dir = os.path.join(workspace, "models", "%ddb" % int(tr_snr))
    pp_data.create_folder(model_dir)

    stats_dir = os.path.join(workspace, "training_stats", "%ddb" % int(tr_snr))
    pp_data.create_folder(stats_dir)

    # Print loss before training. 
    iter = 0
    tr_loss = eval(model, eval_tr_gen, tr_x1, tr_x2, tr_y1, tr_y2, tr_name, tr_adapt_utt)
    te_loss = eval(model, eval_te_gen, te_x1, te_x2, te_y1, te_y2, te_name, te_adapt_utt)
    print("Iteration: %d, tr_loss: %f, te_loss: %f" % (iter, tr_loss, te_loss))

    # Save out training stats. 
    stat_dict = {'iter': iter,
                 'tr_loss': tr_loss,
                 'te_loss': te_loss, }
    stat_path = os.path.join(stats_dir, "%diters.p" % iter)
    cPickle.dump(stat_dict, open(stat_path, 'wb'), protocol=cPickle.HIGHEST_PROTOCOL)

    # Train. 
    t1 = time.time()
    for (batch_x, batch_y) in tr_gen.generate([tr_x1, tr_x2, tr_name], [tr_y1, tr_y2], tr_adapt_utt):
        loss = model.train_on_batch(batch_x, batch_y)
        iter += 1

        # Validate and save training stats. 
        if iter % 100 == 0:
            tr_loss = eval(model, eval_tr_gen, tr_x1, tr_x2, tr_y1, tr_y2, tr_name, tr_adapt_utt)
            te_loss = eval(model, eval_te_gen, te_x1, te_x2, te_y1, te_y2, te_name, te_adapt_utt)
            print("Iteration: %d, tr_loss: %f, te_loss: %f" % (iter, tr_loss, te_loss))
            sys.stdout.flush()

            # Save out training stats. 
            stat_dict = {'iter': iter,
                         'tr_loss': tr_loss,
                         'te_loss': te_loss, }
            stat_path = os.path.join(stats_dir, "%diters.p" % iter)
            cPickle.dump(stat_dict, open(stat_path, 'wb'), protocol=cPickle.HIGHEST_PROTOCOL)

        # Save model. 
        if iter % (iteration / 20) == 0:
            model_path = os.path.join(model_dir, "md_%diters.h5" % iter)
            model.save(model_path)
            print("Saved model to %s" % model_path)

        if iter == iteration + 1:
            break

    print("Training time: %s s" % (time.time() - t1,))
コード例 #19
0
ファイル: main_dnn.py プロジェクト: zk1001/ClearWave
def inference(args):
    """Inference all test data, write out recovered wavs to disk. 
    
    Args:
      workspace: str, path of workspace. 
      tr_snr: float, training SNR. 
      te_snr: float, testing SNR. 
      n_concat: int, number of frames to concatenta, should equal to n_concat 
          in the training stage. 
      iter: int, iteration of model to load. 
      visualize: bool, plot enhanced spectrogram for debug. 
    """
    print(args)
    workspace = args.workspace
    tr_snr = args.tr_snr
    te_snr = args.te_snr
    n_concat = args.n_concat
    iter = args.iteration
    calc_log = args.calc_log
    model_file = args.model_file

    n_window = cfg.n_window
    n_overlap = cfg.n_overlap
    fs = cfg.sample_rate
    scale = True

    # Build model
    n_concat = 7
    n_freq = 257
    n_hid = 2048
    lr = 1e-3

    model = Sequential()
    model.add(Flatten(input_shape=(n_concat, n_freq)))
    model.add(Dropout(0.1))
    model.add(Dense(n_hid, activation='relu'))
    model.add(Dense(n_hid, activation='relu'))
    model.add(Dense(n_hid, activation='relu'))
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(Dense(n_hid, activation='relu'))
    model.add(Dense(n_hid, activation='relu'))
    model.add(Dense(n_hid, activation='relu'))
    model.add(Dropout(0.2))
    model.add(Dense(n_hid, activation='relu'))
    model.add(Dense(n_hid, activation='relu'))
    model.add(Dense(n_hid, activation='relu'))
    model.add(Dropout(0.2))
    if calc_log:
        model.add(Dense(n_freq, activation='linear'))
    else:
        model.add(Dense(n_freq, activation='relu'))
    model.summary()

    model.compile(loss='mean_absolute_error', optimizer=Adam(lr=lr))

    # Load model.
    if (model_file == "null"):
        model_path = os.path.join(workspace, "models", "%ddb" % int(tr_snr),
                                  "md_%diters.h5" % iter)
        #model = load_model(model_path)
        model.load_weights(model_path)
    else:
        model.load_weights(model_file)

    # Load scaler.
    if calc_log:
        scaler_path = os.path.join(workspace, "packed_features", "spectrogram",
                                   "train", "%ddb" % int(tr_snr), "scaler.p")
        scaler = pickle.load(open(scaler_path, 'rb'))

    # Load test data.
    feat_dir = os.path.join(workspace, "features", "spectrogram", "test",
                            "%ddb" % int(te_snr))
    names = os.listdir(feat_dir)

    for (cnt, na) in enumerate(names):
        # Load feature.
        feat_path = os.path.join(feat_dir, na)
        data = cPickle.load(open(feat_path, 'rb'))
        [mixed_cmplx_x, speech_x, noise_x, alpha, na] = data
        mixed_x = np.abs(mixed_cmplx_x)

        # Process data.
        n_pad = (n_concat - 1) / 2
        mixed_x = pp_data.pad_with_border(mixed_x, n_pad)
        if calc_log:
            mixed_x = pp_data.log_sp(mixed_x)
            #speech_x = pp_data.log_sp(speech_x)
        else:
            mixed_x = mixed_x
            #speech_x = speech_x

        # Scale data.
        if calc_log:
            mixed_x = pp_data.scale_on_2d(mixed_x, scaler)
            #speech_x = pp_data.scale_on_2d(speech_x, scaler)
        else:
            mixed_x_max = np.max(mixed_x)
            print("max of tr_x:", mixed_x_max)
            mixed_x = mixed_x / mixed_x_max

            speech_x_max = np.max(speech_x)
            print("max of speech_x:", speech_x_max)
            speech_x = speech_x / speech_x_max

        # Cut input spectrogram to 3D segments with n_concat.
        mixed_x_3d = pp_data.mat_2d_to_3d(mixed_x, agg_num=n_concat, hop=1)

        # Predict.
        if False:
            print(mixed_x_3d)
        pred = model.predict(mixed_x_3d)
        print(cnt, na)
        if False:
            print("pred")
            print(pred)
            print("speech")
            print(speech_x)

        # Inverse scale.
        if calc_log:
            mixed_x = pp_data.inverse_scale_on_2d(mixed_x, scaler)
            #speech_x = pp_data.inverse_scale_on_2d(speech_x, scaler)
            pred = pp_data.inverse_scale_on_2d(pred, scaler)
        else:
            mixed_x = mixed_x * mixed_x_max
            #speech_x = speech_x * 16384
            pred = pred * mixed_x_max

        # Debug plot.
        if args.visualize:
            fig, axs = plt.subplots(3, 1, sharex=False)
            axs[0].matshow(mixed_x.T,
                           origin='lower',
                           aspect='auto',
                           cmap='jet')
            #axs[1].matshow(speech_x.T, origin='lower', aspect='auto', cmap='jet')
            axs[2].matshow(pred.T, origin='lower', aspect='auto', cmap='jet')
            axs[0].set_title("%ddb mixture log spectrogram" % int(te_snr))
            axs[1].set_title("Clean speech log spectrogram")
            axs[2].set_title("Enhanced speech log spectrogram")
            for j1 in xrange(3):
                axs[j1].xaxis.tick_bottom()
            plt.tight_layout()
            plt.show()

        # Recover enhanced wav.
        if calc_log:
            pred_sp = np.exp(pred)
        else:
            #gv = 0.025
            #pred_sp = np.maximum(0,pred - gv)
            pred_sp = pred

        if False:
            pred_sp = mixed_x[3:-3]

        s = recover_wav(pred_sp, mixed_cmplx_x, n_overlap, np.hamming)
        s *= np.sqrt((np.hamming(n_window)**2
                      ).sum())  # Scaler for compensate the amplitude
        # change after spectrogram and IFFT.

        # Write out enhanced wav.
        out_path = os.path.join(workspace, "enh_wavs", "test",
                                "%ddb" % int(te_snr), "%s.enh.wav" % na)
        pp_data.create_folder(os.path.dirname(out_path))
        pp_data.write_audio(out_path, s, fs)
        # Write out enhanced pcm 8K pcm_s16le.
        out_pcm_path = os.path.join(workspace, "enh_wavs", "test",
                                    "%ddb" % int(te_snr), "%s.enh.pcm" % na)
        cmd = ' '.join([
            "./ffmpeg -y -i ", out_path,
            " -f s16le -ar 8000 -ac 1 -acodec pcm_s16le ", out_pcm_path
        ])
        os.system(cmd)

        # Write out webrtc-denoised enhanced pcm 8K pcm_s16le.
        ns_out_pcm_path = os.path.join(workspace, "ns_enh_wavs", "test",
                                       "%ddb" % int(te_snr),
                                       "%s.ns_enh.pcm" % na)
        ns_out_wav_path = os.path.join(workspace, "ns_enh_wavs", "test",
                                       "%ddb" % int(te_snr),
                                       "%s.ns_enh.wav" % na)
        pp_data.create_folder(os.path.dirname(ns_out_pcm_path))
        cmd = ' '.join(["./ns", out_pcm_path, ns_out_pcm_path])
        os.system(cmd)
        cmd = ' '.join([
            "./ffmpeg -y -f s16le -ar 8000 -ac 1 -acodec pcm_s16le -i ",
            ns_out_pcm_path, "  ", ns_out_wav_path
        ])
        os.system(cmd)

        cmd = ' '.join(["rm ", out_pcm_path])
        os.system(cmd)
        cmd = ' '.join(["rm ", ns_out_pcm_path])
        os.system(cmd)
コード例 #20
0
def train(args):
    """Train the neural network. Write out model every several iterations. 
    
    Args:
      workspace: str, path of workspace. 
      tr_snr: float, training SNR. 
      te_snr: float, testing SNR. 
      lr: float, learning rate. 
    """
    print(args)
    workspace = args.workspace
    tr_snr = args.tr_snr
    te_snr = args.te_snr
    lr = args.lr
    iteration = args.iter

    # Load data.
    t1 = time.time()
    tr_hdf5_path = os.path.join(workspace, "packed_features", "spectrogram",
                                "train", "%ddb" % int(tr_snr), "data.h5")
    te_hdf5_path = os.path.join(workspace, "packed_features", "spectrogram",
                                "test", "%ddb" % int(te_snr), "data.h5")
    (tr_x1, tr_x2, tr_y1, tr_y2) = pp_data.load_hdf5(tr_hdf5_path)
    (te_x1, te_x2, te_y1, te_y2) = pp_data.load_hdf5(te_hdf5_path)
    print(tr_x1.shape, tr_y1.shape, tr_x2.shape, tr_y2.shape)
    print(te_x1.shape, te_y1.shape, te_x2.shape, te_y2.shape)
    print("Load data time: %s s" % (time.time() - t1, ))

    batch_size = 500
    print("%d iterations / epoch" % int(tr_x1.shape[0] / batch_size))

    # Scale data.
    if not True:
        t1 = time.time()
        scaler_path = os.path.join(workspace, "packed_features", "spectrogram",
                                   "train", "%ddb" % int(tr_snr), "scaler.p")
        scaler = pickle.load(open(scaler_path, 'rb'))
        tr_x1 = pp_data.scale_on_3d(tr_x1, scaler)
        tr_y1 = pp_data.scale_on_2d(tr_y1, scaler)
        te_x1 = pp_data.scale_on_3d(te_x1, scaler)
        te_y1 = pp_data.scale_on_2d(te_y1, scaler)
        tr_x2 = pp_data.scale_on_2d(tr_x2, scaler)
        tr_y2 = pp_data.scale_on_2d(tr_y2, scaler)
        te_x2 = pp_data.scale_on_2d(te_x2, scaler)
        te_y2 = pp_data.scale_on_2d(te_y2, scaler)
        print("Scale data time: %s s" % (time.time() - t1, ))

    # Debug plot.
    if False:
        plt.matshow(tr_x[0:1000, 0, :].T,
                    origin='lower',
                    aspect='auto',
                    cmap='jet')
        plt.show()
        pause

    # Build model
    (_, n_concat, n_freq) = tr_x1.shape
    n_hid = 2048
    input_dim1 = (257 + 40 + 30) * 2
    input_dim2 = (257 + 40 + 30)
    out_dim1 = (257 + 40 + 30) * 2
    out_dim1_irm = 257 + 40 + 64
    out_dim2 = (257 + 40 + 30)
    out_dim2_irm = (257 + 40 + 64)

    # model = Sequential()
    # model.add(Flatten(input_shape=(n_concat, n_freq)))
    # model.add(Dense(n_hid, activation='relu'))
    # model.add(Dropout(0.2))
    # model.add(Dense(n_hid, activation='relu'))
    # model.add(Dropout(0.2))
    # model.add(Dense(n_hid, activation='relu'))
    # model.add(Dropout(0.2))
    # model.add(Dense(n_freq, activation='linear'))
    input1 = Input(shape=(n_concat, input_dim1), name='input1')
    layer = Flatten(name='flatten')(input1)
    layer = Dense(n_hid, activation='relu', name='dense1')(layer)
    layer = Dropout(0.2)(layer)
    layer = Dense(n_hid, activation='relu', name='dense2')(layer)
    layer = Dropout(0.2)(layer)
    partial_out1 = Dense(out_dim1, name='1_out_linear')(layer)
    partial_out1_irm = Dense(out_dim1_irm,
                             name='1_out_irm',
                             activation='sigmoid')(layer)
    out1 = concatenate([partial_out1, partial_out1_irm], name='out1')
    input2 = Input(shape=(input_dim2, ), name='input2')
    layer = concatenate([input2, out1], name='merge')
    layer = Dense(n_hid, activation='relu', name='dense3')(layer)
    layer = Dropout(0.2)(layer)
    layer = Dense(n_hid, activation='relu', name='dense4')(layer)
    layer = Dropout(0.2)(layer)
    partial_out2 = Dense(out_dim2, name='2_out_linear')(layer)
    partial_out2_irm = Dense(out_dim2_irm,
                             name='2_out_irm',
                             activation='sigmoid')(layer)
    out2 = concatenate([partial_out2, partial_out2_irm], name='out2')
    model = Model(inputs=[input1, input2], outputs=[out1, out2])

    model.summary()
    sys.stdout.flush()
    model.compile(loss='mean_absolute_error',
                  optimizer=Adam(lr=lr, epsilon=1e-03))
    # Data generator.
    tr_gen = DataGenerator(batch_size=batch_size, type='train')
    eval_te_gen = DataGenerator(batch_size=batch_size,
                                type='test',
                                te_max_iter=100)
    eval_tr_gen = DataGenerator(batch_size=batch_size,
                                type='test',
                                te_max_iter=100)

    # Directories for saving models and training stats
    model_dir = os.path.join(workspace, "models", "%ddb" % int(tr_snr))
    pp_data.create_folder(model_dir)

    stats_dir = os.path.join(workspace, "training_stats", "%ddb" % int(tr_snr))
    pp_data.create_folder(stats_dir)

    # Print loss before training.
    iter = 0
    tr_loss = eval(model, eval_tr_gen, tr_x1, tr_x2, tr_y1, tr_y2)
    te_loss = eval(model, eval_te_gen, te_x1, te_x2, te_y1, te_y2)
    print("Iteration: %d, tr_loss: %f, te_loss: %f" % (iter, tr_loss, te_loss))

    # Save out training stats.
    stat_dict = {
        'iter': iter,
        'tr_loss': tr_loss,
        'te_loss': te_loss,
    }
    stat_path = os.path.join(stats_dir, "%diters.p" % iter)
    cPickle.dump(stat_dict,
                 open(stat_path, 'wb'),
                 protocol=cPickle.HIGHEST_PROTOCOL)

    # Train.
    t1 = time.time()
    for (batch_x, batch_y) in tr_gen.generate(xs=[tr_x1, tr_x2],
                                              ys=[tr_y1, tr_y2]):
        loss = model.train_on_batch(batch_x, batch_y)
        iter += 1

        # Validate and save training stats.
        if iter % 100 == 0:
            tr_loss = eval(model, eval_tr_gen, tr_x1, tr_x2, tr_y1, tr_y2)
            te_loss = eval(model, eval_te_gen, te_x1, te_x2, te_y1, te_y2)
            print("Iteration: %d, tr_loss: %f, te_loss: %f" %
                  (iter, tr_loss, te_loss))
            sys.stdout.flush()

            # Save out training stats.
            stat_dict = {
                'iter': iter,
                'tr_loss': tr_loss,
                'te_loss': te_loss,
            }
            stat_path = os.path.join(stats_dir, "%diters.p" % iter)
            cPickle.dump(stat_dict,
                         open(stat_path, 'wb'),
                         protocol=cPickle.HIGHEST_PROTOCOL)

        # Save model.
        if iter % (iteration / 20) == 0:
            model_path = os.path.join(model_dir, "md_%diters.h5" % iter)
            model.save(model_path)
            print("Saved model to %s" % model_path)

        if iter == iteration + 1:
            break

    print("Training time: %s s" % (time.time() - t1, ))
コード例 #21
0
def inference(args):
    """Inference all test data, write out recovered wavs to disk. 
    
    Args:
      workspace: str, path of workspace. 
      tr_snr: float, training SNR. 
      te_snr: float, testing SNR. 
      n_concat: int, number of frames to concatenta, should equal to n_concat 
          in the training stage. 
      iter: int, iteration of model to load. 
      visualize: bool, plot enhanced spectrogram for debug. 
    """
    print(args)
    workspace = args.workspace
    tr_snr = args.tr_snr
    te_snr = args.te_snr
    n_concat = args.n_concat
    iter = args.iteration
    data_type = 'IRM'

    n_window = cfg.n_window
    n_overlap = cfg.n_overlap
    fs = cfg.sample_rate
    scale = True

    # Load model.
    if data_type == "DM":
        model_path = os.path.join(workspace, "models", "mixdb",
                                  "md_%diters.h5" % 120000)
    else:
        model_path = os.path.join(workspace, "models", "mask_mixdb",
                                  "md_%diters.h5" % 265000)
    model = load_model(model_path)

    # Load scaler.
    scaler_path = os.path.join(workspace, "packed_features", "spectrogram",
                               "train", "mixdb", "scaler.p")
    scaler = pickle.load(open(scaler_path, 'rb'))

    # Load test data.
    feat_dir = os.path.join(workspace, "features", "spectrogram", "test",
                            "mixdb")
    names = os.listdir(feat_dir)

    for (cnt, na) in enumerate(names):
        # Load feature.
        feat_path = os.path.join(feat_dir, na)
        data = cPickle.load(open(feat_path, 'rb'))
        [mixed_cmplx_x, speech_x, noise_x, alpha, na] = data
        mixed_x = np.abs(mixed_cmplx_x)
        if data_type == "IRM":
            mixed_x = speech_x + noise_x
            mixed_x1 = speech_x + noise_x
        # Process data.
        n_pad = (n_concat - 1) / 2
        mixed_x = pp_data.pad_with_border(mixed_x, n_pad)
        mixed_x = pp_data.log_sp(mixed_x)

        # Scale data.
        if scale:
            mixed_x = pp_data.scale_on_2d(mixed_x, scaler)

        # Cut input spectrogram to 3D segments with n_concat.
        mixed_x_3d = pp_data.mat_2d_to_3d(mixed_x, agg_num=n_concat, hop=1)

        # Predict.
        pred = model.predict(mixed_x_3d)
        if data_type == "IRM":
            pred_sp = pred * mixed_x1
        print(cnt, na)

        # Inverse scale.
        if data_type == "DM":
            pred = pp_data.inverse_scale_on_2d(pred, scaler)
            pred_sp = np.exp(pred)
        # Debug plot.
        # Recover enhanced wav.
        s = recover_wav(pred_sp, mixed_cmplx_x, n_overlap, np.hamming)
        s *= np.sqrt((np.hamming(n_window)**2
                      ).sum())  # Scaler for compensate the amplitude
        # change after spectrogram and IFFT.
        # Write out enhanced wav.
        if data_type == "DM":
            out_path = os.path.join(workspace, "enh_wavs", "test", "mixdb",
                                    "%s.enh.wav" % na)
        else:
            out_path = os.path.join(workspace, "enh_wavs", "test",
                                    "mask_mixdb", "%s.enh.wav" % na)
        pp_data.create_folder(os.path.dirname(out_path))
        pp_data.write_audio(out_path, s, fs)