def __init__(self): PrepareData.__init__(self) self.adadelta_rho = 0.95 self.opt_epsilon = 1.0 self.adagrad_initial_accumulator_value = 0.1 self.adam_beta1 = 0.9 self.adam_beta2 = 0.999 self.ftrl_learning_rate_power = -0.5 self.ftrl_initial_accumulator_value = 0.1 self.ftrl_l1 = 0.0 self.ftrl_l2 = 0.0 self.momentum = 0.9 self.rmsprop_decay = 0.9 self.rmsprop_momentum = 0.9 self.label_smoothing = 0 self.num_epochs_per_decay = 2.0 self.end_learning_rate = 0.0001 self.save_interval_secs = 60 * 60 #one hour self.save_summaries_secs = 60 self.log_every_n_steps = 100 self.train_dir = './logs' self.batch_size = 32 #optimiser self.optimizer = 'rmsprop' self.learning_rate = 0.01 self.learning_rate_decay_type = 'fixed' self.max_number_of_steps = None self.checkpoint_path = None self.checkpoint_exclude_scopes = None self.ignore_missing_vars = False self.config_training() return
def __init__(self): PrepareData.__init__(self) self.batch_size = 8 self.labels_offset = 0 self.eval_image_size = None self.preprocessing_name = None self.model_name = 'vgg-ssd' self.num_preprocessing_threads = 4 self.checkpoint_path = None self.eval_dir = None return
def __init__(self): PrepareData.__init__(self) self.num_epochs_per_decay = 8.0 self.learning_rate_decay_type = 'exponential' self.end_learning_rate = 0.0001 self.learning_rate = 0.1 #optimiser self.optimizer = 'rmsprop' self.adadelta_rho = 0.95 self.opt_epsilon = 1.0 self.adagrad_initial_accumulator_value = 0.1 self.adam_beta1 = 0.9 self.adam_beta2 = 0.999 self.ftrl_learning_rate_power = -0.5 self.ftrl_initial_accumulator_value = 0.1 self.ftrl_l1 = 0.0 self.ftrl_l2 = 0.0 self.momentum = 0.9 self.rmsprop_decay = 0.9 self.rmsprop_momentum = 0.9 self.train_dir = '/tmp/tfmodel/' self.max_number_of_steps = None self.checkpoint_path = None self.checkpoint_exclude_scopes = None self.ignore_missing_vars = False self.batch_size = 1 self.save_interval_secs = 60 * 60 * 1 #one hour self.save_summaries_secs = 30 self.learning_rate_decay_factor = 0.5 self.label_smoothing = 0 return
def OnSave(self, event=None): """This function appends user modified data to the xml data This function does not write any data to the hard disk """ #Check for modified data PrepareData(self) #Reset state #self.change = False self.applyButton.Disable() self.defaultsButton.Disable() #Reset temporary data. This should be in xml object now self.tempItemData.clear()
def config_training(self): self.batch_size = 100 data_prep = PrepareData() self.train_feeder, self.num_train_samples = data_prep.input_batch_generator( 'train', is_training=True, batch_size=self.batch_size, get_sparselabel=False) print('get training image: ', self.num_train_samples) self.train_dir = g_modellogdir self.max_number_of_epochs = 25 self.save_cpt_epochs = 5 # save every self.save_cpt_epochs epochs self.save_summaries_steps = 500 self.checkpoint_path = None self.checkpoint_exclude_scopes = None self.trainable_scopes = None self.learning_rate = 1e-3 self.learning_rate_decay_type = 'fixed' self.optimizer = 'adam' self.opt_epsilon = 1e-8 return
res.append(item) # training 1-19, validation 19-21 # item = self.__get_train_validation_indexes(df, '2016-01-01', 19, split_method), self.__get_train_validation_indexes(df, '2016-01-20', 2) # res.append(item) # # # training 1-20, validation 21 # item = self.__get_train_validation_indexes(df, '2016-01-01', 20, split_method), self.__get_train_validation_indexes(df, '2016-01-21', 1) # res.append(item) return res def __get_train_validation_indexes(self,df, start_date, days_num, split_method = HoldoutSplitMethod.IMITTATE_TEST2_MIN): dates = self.__get_date(start_date, days_num, days_step=1) slots = self.__get_slots(split_method) dates_slots = self.__get_date_slots(dates, slots) indexes = self.__get_df_indexes(df, dates_slots) return indexes def run(self, df): self.__unit_test() # self.get_kfold_bydate(df) # self.get_kfold_forward_chaining(df) return if __name__ == "__main__": obj= SplitTrainValidation() from preparedata import PrepareData from utility.datafilepath import g_singletonDataFilePath pre = PrepareData() pre.X_y_Df = pre.load_gapdf(g_singletonDataFilePath.getTrainDir()) pre.__engineer_feature(g_singletonDataFilePath.getTrainDir()) obj.run(pre.X_y_Df)
import cv2 import numpy as np import tensorflow as tf import cnn_lstm_otc_ocr import utils import helper from preparedata import PrepareData FLAGS = utils.FLAGS import math logger = logging.getLogger('Traing for OCR using CNN+LSTM+CTC') logger.setLevel(logging.INFO) data_prep = PrepareData() def train(train_dir=None, val_dir=None, mode='train'): model = cnn_lstm_otc_ocr.LSTMOCR(mode) model.build_graph() print('loading train data, please wait---------------------') train_feeder, num_train_samples = data_prep.input_batch_generator('train', is_training=True, batch_size = FLAGS.batch_size) print('get image: ', num_train_samples) print('loading validation data, please wait---------------------') val_feeder, num_val_samples = data_prep.input_batch_generator('val', is_training=False, batch_size = FLAGS.batch_size * 2) print('get image: ', num_val_samples) num_batches_per_epoch = int(math.ceil(num_train_samples / float(FLAGS.batch_size)))
#coding=utf-8 import os import numpy as np import tensorflow as tf import cv2 from preparedata import PrepareData from nets.ssd import g_ssd_model os.environ["CUDA_VISIBLE_DEVICES"] = "0" obj= PrepareData() image, filename,glabels,gbboxes,gdifficults,gclasses_face, localizations_face, gscores_face,\ gclasses_head, localizations_head, gscores_head,gclasses_body, localizations_body,\ gscores_body=obj.get_voc_2007_2012_train_data() ssd_anchors = g_ssd_model.ssd_anchors_all_layers() init = tf.initialize_all_variables() with tf.Session() as sess: sess.run(init) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) for i in range(5): img,picname,label,bbox,gclass,glocal,gscore=sess.run([image, filename,glabels,gbboxes,gclasses_face, localizations_face, gscores_face]) b=np.zeros_like(img[0]) b[:,:,1]=img[0][:,:,1] b[:,:,0]=img[0][:,:,2]
def __init__(self): PrepareData.__init__(self) return
#coding=utf-8 import os import numpy as np import tensorflow as tf import cv2 from preparedata import PrepareData from nets.ssd import g_ssd_model os.environ["CUDA_VISIBLE_DEVICES"] = "0" obj= PrepareData() image, filename,glabels,gbboxes,gdifficults,gclasses_face, localizations_face, gscores_face,\ gclasses_head, localizations_head, gscores_head,gclasses_body, localizations_body,\ gscores_body=obj.get_wider_face_train_data() ssd_anchors = g_ssd_model.ssd_anchors_all_layers() init = tf.initialize_all_variables() with tf.Session() as sess: sess.run(init) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) for i in range(5): img,picname,label,bbox,gclass,glocal,gscore=sess.run([image, filename,glabels,gbboxes,gclasses_face, localizations_face, gscores_face]) b=np.zeros_like(img[0]) b[:,:,1]=img[0][:,:,1] b[:,:,0]=img[0][:,:,2]
from preparedata import PrepareData class Main: def __init__(self): self.data = pd.DataFrame() self.dl = download.Download( "https://raw.githubusercontent.com/ieee8023/covid-chestxray-dataset/master/metadata.csv" ) def download_data(self): url_repo = "https://github.com/ieee8023/covid-chestxray-dataset/tree/master/images" df = self.dl.getDataFrame( "https://raw.githubusercontent.com/ieee8023/covid-chestxray-dataset/master/metadata.csv" ) self.dl.getFolderData(url_repo) print(df) try: self.dl.save(df) except: print("already saved") return df def getImages(self, path): images = preparedata.read_img(path) path = "./data/images/" preparedata = PrepareData(path, df=pd.DataFrame()) main = Main() main.getImages(path)
# item = self.__get_train_validation_indexes(df, '2016-01-01', 20, split_method), self.__get_train_validation_indexes(df, '2016-01-21', 1) # res.append(item) return res def __get_train_validation_indexes( self, df, start_date, days_num, split_method=HoldoutSplitMethod.IMITTATE_TEST2_MIN): dates = self.__get_date(start_date, days_num, days_step=1) slots = self.__get_slots(split_method) dates_slots = self.__get_date_slots(dates, slots) indexes = self.__get_df_indexes(df, dates_slots) return indexes def run(self, df): self.__unit_test() # self.get_kfold_bydate(df) # self.get_kfold_forward_chaining(df) return if __name__ == "__main__": obj = SplitTrainValidation() from preparedata import PrepareData from utility.datafilepath import g_singletonDataFilePath pre = PrepareData() pre.X_y_Df = pre.load_gapdf(g_singletonDataFilePath.getTrainDir()) pre.__engineer_feature(g_singletonDataFilePath.getTrainDir()) obj.run(pre.X_y_Df)
def __init__(self): PrepareData.__init__(self) self.batch_size = 32 return