コード例 #1
0
ファイル: compute_lens.py プロジェクト: griff4692/clin-sum
def generate_counts(example):
    source = example['spacy_source_toks']
    target = example['spacy_target_toks']
    source_sents = sents_from_html(source)
    target_sents = sents_from_html(target)
    source_toks = sent_toks_from_html(source)
    target_toks = sent_toks_from_html(target)

    source_sent_lens, target_sent_lens = [], []
    for source_sent in source_sents:
        source_sent_lens.append(len(source_sent.split(' ')))

    for target_sent in target_sents:
        target_sent_lens.append(len(target_sent.split(' ')))

    num_docs = len(re.findall(r'd note_id', source))
    return ({
        'mrn': example['mrn'],
        'account': example['account'],
        'source_toks': len(source_toks),
        'target_toks': len(target_toks),
        'source_sents': len(source_sents),
        'target_sents': len(target_sents),
        'source_docs': num_docs,
        'target_docs': 1,
    }, {
        'source_sent_lens': source_sent_lens,
        'target_sent_lens': target_sent_lens
    })
コード例 #2
0
ファイル: run_lexrank.py プロジェクト: griff4692/clin-sum
def build(sent_order, sents, record, target_tok_ct=TARGET_TOK_CT):
    summary_sents = []
    sum_len = 0
    sent_lens = []

    assert len(sents) > 0
    # build summaries by total length
    for sent_idx in sent_order:
        sent = sents[sent_idx]
        if sent in summary_sents:
            continue
        this_len = len(sent.split(' '))
        if sum_len + this_len > target_tok_ct and not len(summary_sents) == 0:
            break
        sent_lens.append(this_len)
        summary_sents.append(sent)
        sum_len += this_len
    prediction = ' <s> '.join(summary_sents).strip()

    sent_order_used = sent_order[:len(summary_sents)]
    target_sents = sents_from_html(record['spacy_target_toks'], convert_lower=True)
    n = len(target_sents)
    reference = ' <s> '.join(target_sents).strip()
    ref_len = len(reference.split(' ')) - n  # subtract pseudo sentence tokens

    return {
        'mrn': record['mrn'],
        'account': record['account'],
        'reference': reference,
        'prediction': prediction,
        'ref_len': ref_len,
        'sum_len': sum_len,
        'sent_order': stringify_list(sent_order_used)
    }, sent_lens
コード例 #3
0
ファイル: run_oracle.py プロジェクト: griff4692/clin-sum
def gen_summaries(record):
    target_sents = sents_from_html(resolve_course(record['spacy_target_toks']),
                                   convert_lower=True)
    source_sents = sents_from_html(record['spacy_source_toks'],
                                   convert_lower=True)
    pred_obj = summarizer(source_sents, target_sents)
    n = len(target_sents)
    reference = ' <s> '.join(target_sents).strip()
    ref_len = len(reference.split(' ')) - n  # subtract pseudo sentence tokens
    obj = {
        'account': record['account'],
        'mrn': record['mrn'],
        'reference': reference,
        'ref_len': ref_len,
    }
    obj.update(pred_obj)
    return obj
コード例 #4
0
ファイル: run_lexrank.py プロジェクト: griff4692/clin-sum
def compute_lr_stats(record):
    sents = list(set(sents_from_html(record['spacy_source_toks'], convert_lower=True)))
    reference = prepare_str_for_rouge(record['spacy_target_toks'].lower())
    lr_scores = np.array(list(lxr.rank_sentences(
        sents,
        threshold=0.1,
        fast_power_method=True,
    )))

    n = len(sents)
    predictions = [prepare_str_for_rouge(s) for s in sents]
    references = [reference for _ in range(n)]
    rouge_types = ['rouge1', 'rouge2']
    outputs = compute(predictions, references, rouge_types=rouge_types, use_aggregator=False)
    r_scores = np.array(
        [sum([outputs[t][i].fmeasure for t in rouge_types]) / float(len(rouge_types)) for i in range(n)])
    return list(zip(lr_scores, r_scores))
コード例 #5
0
ファイル: run_lexrank.py プロジェクト: griff4692/clin-sum
def compute_lr(record):
    sents = sents_from_html(record['spacy_source_toks'], convert_lower=True)
    unique_sents = list(set(sents))
    sent_scores = np.array(list(lxr.rank_sentences(
        sents,
        threshold=0.1,
        fast_power_method=True,
    )))

    frac_uniq = len(unique_sents) / float(len(sents))

    sent_scores_deduped = np.array(list(lxr.rank_sentences(
        unique_sents,
        threshold=0.1,
        fast_power_method=True,
    )))

    sent_order = np.argsort(-sent_scores)
    sent_order_deduped = np.argsort(-sent_scores_deduped)

    o1, sent_lens = build(sent_order, sents, record)
    o2, _ = build(sent_order_deduped, unique_sents, record)
    return o1, o2, np.array(sent_lens).mean(), frac_uniq
コード例 #6
0
ファイル: run_retrieval.py プロジェクト: griff4692/clin-sum
def gen_summaries(record):
    target_sents = sents_from_html(record['spacy_target_toks'],
                                   convert_lower=True)
    summary_sents = list(
        map(
            lambda sent: bm25.get_top_n(
                gen_query(sent.split(' ')), corpus, n=1)[0], target_sents))

    n = len(target_sents)

    reference = ' <s> '.join(target_sents).strip()
    summary = ' <s> '.join(summary_sents).strip()
    ref_len = len(reference.split(' ')) - n  # subtract pseudo sentence tokens
    sum_len = len(summary.split(' ')) - n  # subtract pseudo sentence tokens

    return {
        'account': record['account'],
        'mrn': record['mrn'],
        'prediction': summary,
        'reference': reference,
        'sum_len': sum_len,
        'ref_len': ref_len,
    }
コード例 #7
0
ファイル: run_lexrank.py プロジェクト: griff4692/clin-sum
def aggregate(source_str):
    return ' '.join(sents_from_html(source_str, convert_lower=True))
コード例 #8
0
def generate_samples(row):
    """
    :param row:
    :return:
    """
    rouge_types = ['rouge1', 'rouge2']
    single_extraction_examples = []
    rouge_diffs = defaultdict(float)
    rouge_gains = defaultdict(float)
    rouge_fulls = defaultdict(float)

    source_sents = sents_from_html(row['spacy_source_toks'], convert_lower=True)
    target_sents = sents_from_html(row['spacy_target_toks'], convert_lower=True)
    target_n = len(target_sents)

    if not eval_mode and target_n > MAX_TARGET_SENTS:
        return [], rouge_diffs, rouge_gains, rouge_fulls

    target = ' '.join(target_sents)
    target_no_stop = prepare_str_for_rouge(target)
    target_toks = set(target_no_stop.split(' '))

    source_sents_no_stop = list(map(prepare_str_for_rouge, source_sents))
    dup_idxs = set()
    seen = set()
    for idx, source_sent in enumerate(source_sents_no_stop):
        if source_sent in seen:
            dup_idxs.add(idx)
        else:
            seen.add(source_sent)
    # remove duplicate sentences and 1-2 word sentences (too many of them) and most are not necessary for BHC
    should_keep_all = eval_mode or type == 'test'
    keep_idxs = [
        idx for idx, s in enumerate(source_sents_no_stop) if extraction_is_keep(
            s, target_toks, no_match_keep_prob=compute_no_match_keep_prob(len(source_sents), should_keep_all)
        ) and idx not in dup_idxs
    ]
    source_sents_no_stop_filt = [source_sents_no_stop[idx] for idx in keep_idxs]
    source_sents_filt = [source_sents[idx] for idx in keep_idxs]
    source_n = len(keep_idxs)

    if not should_keep_all and (source_n < target_n or source_n > MAX_SOURCE_SENTS):
        return [], rouge_diffs, rouge_gains, rouge_fulls

    curr_sum_sents = []
    curr_rouge = 0.0
    included_sent_idxs = set()
    max_sum_n = min(source_n, len(target_sents), MAX_SUM_SENTS)
    if eval_mode:
        max_sum_n = 1
    references = [target_no_stop for _ in range(source_n)]

    for gen_idx in range(max_sum_n):
        curr_sum = prepare_str_for_rouge(' '.join(curr_sum_sents).strip() + ' ')
        predictions = [(curr_sum + s).strip() for s in source_sents_no_stop_filt]
        outputs = compute(predictions=predictions, references=references, rouge_types=rouge_types, use_aggregator=False)
        scores = np.array(
            [sum([outputs[t][i].fmeasure for t in rouge_types]) / float(len(rouge_types)) for i in range(source_n)])
        scores_pos_mask = scores.copy()
        if len(included_sent_idxs) > 0:
            scores[list(included_sent_idxs)] = float('-inf')
            scores_pos_mask[list(included_sent_idxs)] = float('inf')
        max_idx = int(np.argmax(scores))
        max_score = scores[max_idx]
        assert max_idx not in included_sent_idxs
        min_score = scores_pos_mask.min()
        max_differential = max_score - min_score
        max_gain = max_score - curr_rouge

        valid_scores = []
        for score in scores:
            if score > -1:
                valid_scores.append(score)
        rouge_diffs[gen_idx] = max_differential
        rouge_gains[gen_idx] = max_score - np.mean(valid_scores)
        rouge_fulls[gen_idx] = max_score
        if max_gain < MIN_ROUGE_IMPROVEMENT or max_differential < MIN_ROUGE_DIFFERENTIAL:
            break

        eligible_scores = []
        eligible_source_sents = []
        for i in range(len(scores)):
            if i not in included_sent_idxs:
                eligible_scores.append(scores[i])
                eligible_source_sents.append(source_sents_filt[i])

        # Example
        example = {
            'mrn': row['mrn'],
            'account': row['account'],
            'curr_sum_sents': curr_sum_sents.copy(),
            'candidate_source_sents': eligible_source_sents,
            'curr_rouge': curr_rouge,
            'target_rouges': eligible_scores,
            'target_sents': target_sents,
        }

        single_extraction_examples.append(example)
        curr_rouge = max_score
        curr_sum_sents.append(source_sents_filt[max_idx])
        included_sent_idxs.add(max_idx)
    assert len(curr_sum_sents) == len(set(curr_sum_sents))
    return single_extraction_examples, rouge_diffs, rouge_gains, rouge_fulls
コード例 #9
0
    parser = argparse.ArgumentParser('Script to generate NSP scores')
    parser.add_argument('--pretrained_model',
                        default='emilyalsentzer/Bio_ClinicalBERT',
                        choices=['emilyalsentzer/Bio_ClinicalBERT'])
    parser.add_argument('--max_n', default=-1, type=int)

    args = parser.parse_args()

    mini = 0 <= args.max_n <= 100
    validation_df = get_records(split='validation', mini=mini)
    records = validation_df.to_dict('records')
    if args.max_n > 0:
        np.random.seed(1992)
        records = np.random.choice(records, size=args.max_n, replace=False)
    target_sents = [
        sents_from_html(record['spacy_target_toks']) for record in records
    ]

    n = len(records)
    print('Loading tokenizer...')
    tokenizer = BertTokenizer.from_pretrained(args.pretrained_model)
    print('Loading model...')
    model = BertForNextSentencePrediction.from_pretrained(
        args.pretrained_model, return_dict=True)

    print('Generating NSP predictions for {} examples'.format(n))
    outputs = list(tqdm(map(process, target_sents), total=n))
    agg_output = defaultdict(list)
    for output in outputs:
        for k, v in output.items():
            agg_output[k] += v