def crop_circles(input_folder, ouput_folder): clear_folder(ouput_folder) input_files = os.listdir(input_folder) i = 0 for input_file in input_files: path_input_file = input_folder + input_file img = cv2.imread(path_input_file) # print(path_input_file) imgResize = cv2.resize(img, None, fx=0.2, fy=0.2, interpolation=cv2.INTER_CUBIC) imgPreprocessed = preprocess1(imgResize) circles = process1(imgPreprocessed) # only one coin per image, filter bad recognition if len(circles) == 1: path = ouput_folder + str(i) + ".jpeg" i += 1 rois, rois_masked = get_rois_from_image_and_circles( imgResize, circles) # print("write " + path) cv2.imwrite(path, rois_masked[0])
#分别把各个类别数据整理成一个列表形式 sentences = [] prep = preprocess(sentences, bingyin, zhenduan, zhengzhuang, zhiliao) prep.preprocess_text(bingyin, sentences, 'pathogeny') prep.preprocess_text(zhenduan, sentences, 'diagnosis') prep.preprocess_text(zhengzhuang, sentences, 'symptom') prep.preprocess_text(zhiliao, sentences, 'treatment') random.shuffle(sentences) #分别把各个类别数据整理成各个列表形式 bingyin_list = [] zhenduan_list = [] zhengzhuang_list = [] zhiliao_list = [] prep = preprocess1(bingyin_list, zhenduan_list, zhengzhuang_list, zhiliao_list, bingyin, zhenduan, zhengzhuang, zhiliao) prep.preprocess_lines(bingyin, bingyin_list) prep.preprocess_lines(zhenduan, zhenduan_list) prep.preprocess_lines(zhengzhuang, zhengzhuang_list) prep.preprocess_lines(zhiliao, zhiliao_list) #分割数据 x, y = zip(*sentences) x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1234) #训练数据,并训练各自的疾病数据成向量 text_classifier = TextClassifier() text_classifier.fit(x_train, y_train) print(text_classifier.score(x_test, y_test)) bingyin_xl = text_classifier.features(bingyin_list).todense() zhiliao_xl = text_classifier.features(zhiliao_list).todense()