def Datatest(): """ :param test_essay: :return: Create csv file for every set """ test_essay = pd.read_csv( "/mnt/1f2870f0-1578-4534-b33f-0817be64aade/projects/Hackerearth/incedo_nlpcadad7d/incedo_participant/test_dataset.csv" ) essay_Set = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0] c = 0 for i in essay_Set: if i > 0: c = c + 1 set_filter = (test_essay.Essayset == i) id_list = ['ID'] id_list.extend(list(test_essay[set_filter]['ID'])) average_word_length, no_of_word, no_of_sentence = no_of_words( test_essay[set_filter]['EssayText']) processed_essay = preprocessdata( test_essay[set_filter]['EssayText']) flesch_score, gunning_index, kincaid_grade, liau_index, automated_readability_index, dale_readability_score, difficult_word, linsear_write = seven_test( processed_essay) #18 count_misspell = Spelling_mistake(processed_essay) Flesch_score_list = calculate_Flesch_Score( test_essay[set_filter]['EssayText']) count_clause_word = Clauseword(processed_essay) list_of_pos_tag = PosTagging(processed_essay) count_of_NN = NN_Extraction(list_of_pos_tag) count_of_NNP = NNP_Extraction(list_of_pos_tag) count_of_verb = VERB_Extraction(list_of_pos_tag) count_of_adverb = ADVERB_Extraction(list_of_pos_tag) count_of_adjective = ADJECTIVE_Extraction(list_of_pos_tag) #count_of_deteminers = DETERMINERS_Extraction(list_of_pos_tag) clarity = clarity_list(test_essay[set_filter]) coherant = coherant_list(test_essay[set_filter]) #tfidf_score = calculate_tfidf(test_essay,i) complete_data = [] list_column = [ count_of_NN, count_of_NNP, count_of_verb, count_of_adverb, flesch_score, count_of_adjective, count_misspell, clarity, coherant, Flesch_score_list, count_clause_word, gunning_index, dale_readability_score, linsear_write, average_word_length, no_of_word, no_of_sentence ] for i in list_column: complete_data.append(i) store_csv(complete_data, c)
# fig_path fig_path = r'./out_put/figure' mkdir(fig_path) from fcn_test import myFcn myfcn = myFcn(component=1) model = myfcn.get_fcn() # result file path label_predpath = r'../data/predict/conv_pre/test' mkdir(label_predpath) result_load_path = r'./out_put' mkdir(result_load_path) # the number of train and test trainnum, testnum = 0, 300 # the length of samples of one trace,the components of the data img_cols, component = 4992, 1 # load data data, label = preprocessdata(data_load_path, trainnum, testnum, img_cols, component, 'predict') # load model model = loadModel(model_load_path) # predict label label_pred = model.predict(data, batch_size=32, verbose=0) savemat(data_load_path, testnum, data) # save result save_result(result_load_path, label_pred, parameter1, parameter2) save_label_pred(result_load_path, data, label_pred, label_predpath) # show label show_label(label, label_pred, [], fig_path) show_data_and_label(data, label_pred, [], fig_path)
if __name__ == '__main__': output_path = r'./test' mkdir(output_path) filepath=[r'./data/train'] trainnum,testnum = 750, 250 img_cols = 4992 # the length of samples of one trace component = 1 # the components of the data save_img_path = output_path + r'/train_curves.png' log_path = output_path + r'/Log.txt' # --------------- batch_size = 32 nb_epoch = 500 # you still need to modify the data in GaussDirtribution_2D of preprocess #---------------- # 2 Load data train_data, train_label, test_data, test_label = preprocessdata(filepath,trainnum,testnum,img_cols,component) # 3 Load model #myunet = myUnet(img_cols = img_cols,component = component) #model = myunet.get_une() myfcn = myFcn(img_cols = img_cols,component = component) model = myfcn.get_fcn() # 4 Train model print('Fitting model...') model_checkpoint = ModelCheckpoint(output_path+'/unet.hdf5', monitor='loss',verbose=1, save_best_only=True) history = LossHistory() try: hist=model.fit(train_data, train_label, batch_size = batch_size, epochs = nb_epoch, verbose=2, validation_data=(test_data, test_label), callbacks=[model_checkpoint,history]) finally: # 5 Print the training result history.loss_plot('epoch',save_img_path) # 6 save the result