コード例 #1
0
def main():
    if len(sys.argv) < 3:
        raise RuntimeError(
            'Command Line Argument Must be (sketch file, style file)')

    style_f = './data/styles/%s' % sys.argv[2]
    test_f = './data/test/%s' % sys.argv[1]

    filename = sys.argv[1][:-4] + sys.argv[2][:-4] + '.png'

    style = Image.open(style_f).convert('RGB')
    style = transforms.Resize((512, 512))(style)
    style_pil = style

    test = Image.open(test_f).convert('RGB')
    test_pil = transforms.Resize((512, 512))(test)

    transform = transforms.Compose(
        [transforms.Resize((512, 512)),
         transforms.ToTensor()])

    test = transform(test)
    test = scale(test)
    test = test.unsqueeze(0).to(device)

    to_pil = transforms.ToPILImage()

    try:
        images = list(crop_region(style))
        result = {}
        for i, img in enumerate(images, 1):
            colors = cgm.extract(img, topk + 1)
            result[str(i)] = {
                '%d' % i: get_rgb(colors[i])
                for i in range(1, topk + 1)
            }

        color_tensor = make_colorgram_tensor(result)
        color_tensor = color_tensor.unsqueeze(0).to(device)

        fakeB, _ = model(test, color_tensor)
        fakeB = fakeB.squeeze(0)
        fakeB = re_scale(fakeB.detach().cpu())
        fakeB = to_pil(fakeB)

        result_image = Image.new('RGB', (512 * 3, 512))
        result_image.paste(test_pil, (512 * 0, 0, 512 * 1, 512))
        result_image.paste(style_pil, (512 * 1, 0, 512 * 2, 512))
        result_image.paste(fakeB, (512 * 2, 0, 512 * 3, 512))
        save_image(result_image, os.path.join(out_root, filename))

    except IndexError:
        exit(1)
コード例 #2
0
def actbycolor(stylelist, testfile):
    print(stylelist)
    print(stylelist[0])
    if len(sys.argv) < 3:
        raise RuntimeError(
            'Command Line Argument Must be (sketch file, style file)')
    result = {}
    j = 0
    for i in range(1, 5):
        temp = {}
        for k in range(1, 5):
            if j >= len(stylelist):
                j = 0
            temp[str(k)] = stylelist[j]
            j = j + 1
        result[str(i)] = temp
    print(result)
    test_f = testfile

    # filename = sys.argv[1][:-4] + sys.argv[2][:-4] + '.png'
    test = Image.open(test_f).convert('RGB')
    test_pil = transforms.Resize((256, 256))(test)

    style = Image.open('media/immm.jpg').convert('RGB')
    style = transforms.Resize((256, 256))(style)
    print(style)
    style_pil = style

    transform = transforms.Compose(
        [transforms.Resize((256, 256)),
         transforms.ToTensor()])

    test = transform(test)
    test = scale(test)
    test = test.unsqueeze(0).to(device)

    to_pil = transforms.ToPILImage()
    nowtime = time.time()
    try:
        nowtime2 = time.time()
        print(result)
        print(nowtime2 - nowtime)
        color_tensor = make_colorgram_tensor(result)
        color_tensor = color_tensor.unsqueeze(0).to(device)

        fakeB, _ = model(test, color_tensor)
        fakeB = fakeB.squeeze(0)
        fakeB = re_scale(fakeB.detach().cpu())
        fakeB = to_pil(fakeB)
        fakeB.save(os.path.expanduser('media/result.jpg'))

        result_image = Image.new('RGB', (256 * 3, 256))
        result_image.paste(test_pil, (256 * 0, 0, 256 * 1, 256))
        result_image.paste(style_pil, (256 * 1, 0, 256 * 2, 256))
        result_image.paste(fakeB, (256 * 2, 0, 256 * 3, 256))
        result_image.save(os.path.expanduser('media/compareresult.jpg'))
        # save_image(result_image, os.path.join(out_root, filename))

    except IndexError:
        exit(1)
    nowtime2 = time.time()
    print(nowtime2 - nowtime)


# if __name__ == "__main__":
#     main()
コード例 #3
0
            image = skimage.transform.pyramid_expand(
                image,
                upscale=512 // (image.shape[-1]),
                multichannel=False,
            )
        return to_pil(torch.Tensor(image).unsqueeze(0))

    attentions = list(map(lambda img: interpolate(img), attentions))

    result = Image.new('RGBA', (4 * 512, 512))
    styleB = styleB.squeeze()
    fakeB = fakeB.squeeze()
    imageA = imageA.squeeze()
    imageB = imageB.squeeze()

    imageA = to_pil(re_scale(imageA).detach().cpu())
    imageB = to_pil(re_scale(imageB).detach().cpu())
    styleB = to_pil(re_scale(styleB).detach().cpu())
    fakeB = to_pil(re_scale(fakeB).detach().cpu())

    result.paste(imageA, (0, 0))
    result.paste(styleB, (512, 0))
    result.paste(fakeB, (512 * 2, 0))
    result.paste(imageB, (512 * 3, 0))

    figure = Image.new('RGB', (9 * 512, 512))
    figure.paste(imageA, (0, 0))
    figure.paste(styleB, (512 * 1, 0))
    figure.paste(attentions[0], (512 * 2, 0))
    figure.paste(attentions[1], (512 * 3, 0))
    figure.paste(attentions[2], (512 * 4, 0))
コード例 #4
0
    def validate(self, dataset, epoch, samples=3):
        # self.generator.eval()
        # self.discriminator.eval()
        length = len(dataset)

        # sample images
        idxs_total = [
            random.sample(range(0, length - 1), samples * 2)
            for _ in range(epoch)
        ]

        for j, idxs in enumerate(idxs_total):
            styles = idxs[samples:]
            targets = idxs[0:samples]

            result = Image.new(
                'RGB', (5 * self.resolution, samples * self.resolution))

            toPIL = transforms.ToPILImage()

            G_loss_gan = []
            G_loss_l1 = []
            D_loss_real = []
            D_loss_fake = []
            l1_loss = self.losses['L1']
            gan_loss = self.losses['GAN']
            for i, (target, style) in enumerate(zip(targets, styles)):
                sub_result = Image.new('RGB',
                                       (5 * self.resolution, self.resolution))
                imageA, imageB, _ = dataset[target]
                styleA, styleB, colors = dataset[style]

                if self.args.mode == 'B2A':
                    imageA, imageB = imageB, imageA
                    styleA, styleB = styleB, styleA

                imageA = imageA.unsqueeze(0).to(self.device)
                imageB = imageB.unsqueeze(0).to(self.device)
                styleB = styleB.unsqueeze(0).to(self.device)
                colors = colors.unsqueeze(0).to(self.device)

                with torch.no_grad():
                    fakeB, _ = self.generator(
                        imageA,
                        colors,
                    )
                    fakeAB = torch.cat([imageA, fakeB], 1)
                    realAB = torch.cat([imageA, imageB], 1)

                    G_loss_l1.append(l1_loss(fakeB, imageB).item())
                    G_loss_gan.append(
                        gan_loss(self.discriminator(fakeAB), True).item())

                    D_loss_real.append(
                        gan_loss(self.discriminator(realAB), True).item())
                    D_loss_fake.append(
                        gan_loss(self.discriminator(fakeAB), False).item())

                styleB = styleB.squeeze()
                fakeB = fakeB.squeeze()
                imageA = imageA.squeeze()
                imageB = imageB.squeeze()
                colors = colors.squeeze()

                imageA = toPIL(re_scale(imageA).detach().cpu())
                imageB = toPIL(re_scale(imageB).detach().cpu())
                styleB = toPIL(re_scale(styleB).detach().cpu())
                fakeB = toPIL(re_scale(fakeB).detach().cpu())

                # synthesize top-4 colors
                color1 = toPIL(re_scale(colors[0:3].detach().cpu()))
                color2 = toPIL(re_scale(colors[3:6].detach().cpu()))
                color3 = toPIL(re_scale(colors[6:9].detach().cpu()))
                color4 = toPIL(re_scale(colors[9:12].detach().cpu()))

                color1 = color1.rotate(90)
                color2 = color2.rotate(90)
                color3 = color3.rotate(90)
                color4 = color4.rotate(90)

                color_result = Image.new('RGB',
                                         (self.resolution, self.resolution))
                color_result.paste(
                    color1.crop((0, 0, self.resolution, self.resolution // 4)),
                    (0, 0))
                color_result.paste(
                    color2.crop((0, 0, self.resolution, self.resolution // 4)),
                    (0, self.resolution // 4))
                color_result.paste(
                    color3.crop((0, 0, self.resolution, self.resolution // 4)),
                    (0, self.resolution // 4 * 2))
                color_result.paste(
                    color4.crop((0, 0, self.resolution, self.resolution // 4)),
                    (0, self.resolution // 4 * 3))

                sub_result.paste(imageA, (0, 0))
                sub_result.paste(styleB, (self.resolution, 0))
                sub_result.paste(fakeB, (2 * self.resolution, 0))
                sub_result.paste(imageB, (3 * self.resolution, 0))
                sub_result.paste(color_result, (4 * self.resolution, 0))

                result.paste(sub_result, (0, 0 + self.resolution * i))

            print(
                'Validate D_loss_real = %f, D_loss_fake = %f, G_loss_l1 = %f, G_loss_gan = %f'
                % (
                    sum(D_loss_real) / samples,
                    sum(D_loss_fake) / samples,
                    sum(G_loss_l1) / samples,
                    sum(G_loss_gan) / samples,
                ))

            save_image(
                result,
                'deepunetpaint_%03d_%02d' % (epoch, j),
                self.save_path,
            )