コード例 #1
0
def getSampleData(data, mode='trapezoidal'):  # only for feature plot
    copydata = copy.deepcopy(data)
    random.shuffle(copydata)
    if mode == 'trapezoidal':
        dataset = preprocess.removeDataTrapezoidal(copydata)
    if mode == 'variable':
        dataset = preprocess.removeRandomData(copydata)
    else:
        "ERROR, WRONG STREAM_MODE"
    all_keys = set().union(*(d.keys() for d in dataset))

    X, y = [], []
    for row in dataset:
        for key in all_keys:
            if key not in row.keys(): row[key] = 0
        y.append(row['class_label'])
        del row['class_label']
    if 0 not in row.keys(): start = 1
    if 0 in row.keys(): start = 0
    for row in dataset:
        X_row = []
        for i in range(start, len(row)):
            X_row.append(row[i])
        X.append(X_row)
    return X, y
コード例 #2
0
ファイル: OLVF.py プロジェクト: CopperWasp/OLVF
    def getShuffledData(self,
                        mode=p.stream_mode
                        ):  # generate data for cross validation
        data = self.data
        copydata = copy.deepcopy(data)
        random.shuffle(copydata)
        if mode == 'trapezoidal':
            dataset = preprocess.removeDataTrapezoidal(copydata)
        if mode == 'variable': dataset = preprocess.removeRandomData(copydata)
        else: dataset = copydata
        all_keys = set().union(*(d.keys() for d in dataset))

        X, y = [], []
        for row in dataset:
            for key in all_keys:
                if key not in row.keys(): row[key] = 0
            y.append(row['class_label'])
            del row['class_label']
        if 0 not in row.keys(): start = 1
        if 0 in row.keys(): start = 0
        for row in dataset:
            X_row = []
            for i in range(start, len(row)):
                X_row.append(row[i])
            X.append(X_row)
        self.X, self.y = X, y
コード例 #3
0
def getShuffledTrapezoidalData(data):
    copydata = copy.deepcopy(data)
    random.shuffle(copydata)
    dataset = p.removeDataTrapezoidal(copydata)
    all_keys = set().union(*(d.keys() for d in dataset))
    X, y = [], []
    for row in dataset:
        for key in all_keys:
            if key not in row.keys(): row[key] = 0
        y.append(row['class_label'])
        del row['class_label']
    if 0 not in row.keys(): start = 1
    if 0 in row.keys(): start = 0
    for row in dataset:
        X_row = []
        for i in range(start, len(row)):
            X_row.append(row[i])
        X.append(X_row)
    return X, y
コード例 #4
0
ファイル: OLSF.py プロジェクト: CopperWasp/DataStreams
    def getShuffledData(self):  # generate data for cross validation
        data = self.data
        copydata = copy.deepcopy(data)
        random.Random(p.random_seed).shuffle(copydata)
        dataset = preprocess.removeDataTrapezoidal(copydata)
        all_keys = set().union(*(d.keys() for d in dataset))

        X, y = [], []
        for row in dataset:
            for key in all_keys:
                if key not in row.keys(): row[key] = 0
            y.append(row['class_label'])
            del row['class_label']
        if 0 not in row.keys(): start = 1
        if 0 in row.keys(): start = 0
        for row in dataset:
            X_row = []
            for i in range(start, len(row)):
                X_row.append(row[i])
            X.append(X_row)
        self.X, self.y = X, y