コード例 #1
0
        res_size = 0
    if bidirectional == "True":
        total_res_size = res_size * 2
    else:
        total_res_size = res_size
    a = float(args.leak_rate)  # leaking rate
    res_sparsity = float(args.res_sparsity)
    only_open_class = args.only_open_class
    training_iterations = int(args.training_iterations)
    save_path = args.save_path

    embeddings = load_embeddings(embeddings_model)  # load the embeddings
    f_sensekey2synset = cPickle.load(open(
        sensekey2synset, "rb"))  # get the mapping between synset keys and IDs
    train_data, known_lemmas = read_data(
        train_data_path, f_sensekey2synset,
        only_open_class)  # read the training data
    lemma2synset = get_lemma2syn(dictionary)
    lemma2id, synset2id = get_lemma_synset_maps(lemma2synset, known_lemmas)

    if softmax == "True":
        output_size = len(synset2id)
    else:
        output_size = embeddings_size
    input_size = embeddings_size * window_size

    # generate the ESN reservoir
    name_add = str(res_size) + '_' + str(res_sparsity) + '_' + str(a)
    random.seed(42)
    Wout = (random.rand(output_size, total_res_size + input_size) - 0.5) * 1.0
    if softmax == "True":
コード例 #2
0
import os
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import cv2
import datetime
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
import pdb

from preprocess_data import read_data
'''
!!!the KTH dataset may have 599 files,I add one duplicate video
in the folder having 99 images
'''
X_tr = read_data()
X_train = np.array(X_tr)  #convert the frames read into array
num_samples = len(X_train)  #600

label = np.ones((num_samples, ), dtype=int)
#each class has 100 videos
label[0:100] = 0
label[100:200] = 1
label[200:300] = 2
label[300:400] = 3
label[400:500] = 4
label[500:] = 5
y_train = label

#600 num_samples
img_rows, img_cols, img_depth = 32, 32, 15
コード例 #3
0
ファイル: biESN_test.py プロジェクト: pkoprinkova/esn-wsd
    bidirectional = args.bidirectional
    if use_reservoirs == "True":
        res_size = int(args.res_size)
    else:
        res_size = 0
    if bidirectional == "True":
        total_res_size = res_size * 2
    else:
        total_res_size = res_size
    only_open_class = args.only_open_class
    save_path = args.save_path

    embeddings = load_embeddings(embeddings_model)  # load the embeddings
    f_sensekey2synset = cPickle.load(open(
        sensekey2synset, "rb"))  # get the mapping between synset keys and IDs
    test_data = read_data(test_data_path, f_sensekey2synset, only_open_class)

    inSize = embeddings_size * window_size
    outSize = embeddings_size

    with open(save_path, "rb") as input_file:
        _ = cPickle.load(input_file)
        resSparsity = cPickle.load(input_file)
        a = cPickle.load(input_file)
        Wout = cPickle.load(input_file)
        if use_reservoirs == "True":
            Win_fw = cPickle.load(input_file)
            Win_bw = cPickle.load(input_file)
            W_fw = cPickle.load(input_file)
            W_bw = cPickle.load(input_file)
            G_fw = cPickle.load(input_file)
コード例 #4
0
ファイル: biESN_test.py プロジェクト: alexpopov23/esn-wsd
    if bidirectional == "True":
        total_res_size = res_size * 2
    else:
        total_res_size = res_size
    only_open_class = args.only_open_class
    save_path = args.save_path
    f_syn2gloss = args.syn2gloss
    if f_syn2gloss != "None":
        syn2gloss = pickle.load(open(f_syn2gloss, "rb"))
    else:
        syn2gloss = None
    error_log = args.error_log

    embeddings = load_embeddings(embeddings_model)  # load the embeddings
    f_sensekey2synset = cPickle.load(open(sensekey2synset, "rb"))  # get the mapping between synset keys and IDs
    test_data, known_lemmas = read_data(test_data_path, f_sensekey2synset, only_open_class)

    input_size = embeddings_size * window_size
    output_size = embeddings_size

    pickled_files = ""
    for f in os.listdir(save_path):
        if f.endswith(".cpickle"):
            pickled_files = f

    synset2id = None
    with open(os.path.join(save_path, pickled_files), "rb") as input_file:
        _ = cPickle.load(input_file)
        resSparsity = cPickle.load(input_file)
        a = cPickle.load(input_file)
        if softmax == "True":