data_df = pu.match_label_with_sample(data_df, valence_list) #data_df = pu.match_label_with_sample(data_df,arousal_list,col_name='arousal') #%% plot scatter matrix fig = ff.create_scatterplotmatrix(data_df[[0, 1, 12, 13, 'label']], diag='histogram', index='label', height=1000, width=1000) plotly.offline.plot(fig) #%% ##iaps_class = iaps(r"C:\Users\DSPLab\Research\affective-monitor-model\preprocessing\IAPSinfoFile_Final.txt") iaps_class = iaps(r"E:\Research\affective-monitor-model\preprocessing") sample_list_from_pic_id = iaps_class.get_sample_idx(2141) feel_df = iaps_class.get_feeling('happy') #%% #path = "C:\\Users\\DSPLab\\Research\\ExperimentData" path = "E:\\Research\\ExperimentData" n = 1 subjects = [i for i in range(1, n + 1)] #%% get data #faps_df = pfap.get_faps() #FAP_index = ['l_i_eyebrow_y','r_i_eyebrow_y','l_o_eyebrow_y','r_o_eyebrow_y', # 'l_i_eyebrow_x','r_i_eyebrow_x','t_l_eyelid_y','t_r_eyelid_y', # 'l_cheeck_y','r_cheeck_y','l_nose_x','r_nose_x', # 'l_o_cornerlip_y','r_o_cornerlip_y','l_o_cornerlip_x','r_o_cornerlip_x',
# -*- coding: utf-8 -*- from preprocessing.iaps import iaps iaps_class = iaps() print(iaps_class.get_pic_id(0)) print(iaps_class.get_sample_idx(1050))
#%% # scatter plot matrix #fig = data_df[['mean','max','median','min','skew']].reset_index(drop=True).scatter_matrix(asFigure=True) #plotly.offline.plot(fig) fig = ff.create_scatterplotmatrix( data_df[['mean', 'max', 'median', 'min', 'skew', 'label']], diag='histogram', index='arousal', height=1000, width=1000) plotly.offline.plot(fig) #%% iaps_class = iaps( r"C:\Users\DSPLab\Research\affective-monitor-model\preprocessing") #iaps_class = iaps(r"E:\Research\affective-monitor-model\preprocessing\IAPSinfoFile_Final.txt") iaps_df = iaps_class.iaps_df pic_id_max_arousal = iaps_df.loc[iaps_df['arousal_m'].idxmax()]['pic_id'] pic_id_min_arousal = iaps_df.loc[iaps_df['arousal_m'].idxmin()]['pic_id'] list_max_idx = iaps_class.get_sample_idx(6550) list_min_idx = iaps_class.get_sample_idx(1419) final_list = list_max_idx + list_min_idx # get samples import preprocessing.pd as ppd pd_signals = ppd.get_pds(pickle_file='data_1_51.pkl') illum_mean_df = utils.load_object('illum_mean.pkl') depth_mean_df = utils.load_object('depth_mean.pkl') # remove glitch