def get_test_image_preprocessor(batch_size, params):
  """Returns the preprocessing.TestImagePreprocessor that should be injected.

  Returns None if no preprocessor should be injected.

  Args:
    batch_size: The batch size across all GPUs.
    params: BenchmarkCNN's parameters.
  Returns:
    Returns the preprocessing.TestImagePreprocessor that should be injected.
  Raises:
    ValueError: Flag --fake_input is an invalid value.
  """
  if FLAGS.fake_input == 'none':
    return None
  elif FLAGS.fake_input == 'zeros_and_ones':
    half_batch_size = batch_size // 2
    images = np.zeros((batch_size, 227, 227, 3), dtype=np.float32)
    images[half_batch_size:, :, :, :] = 1
    labels = np.array([0] * half_batch_size + [1] * half_batch_size,
                      dtype=np.int32)
    preprocessor = preprocessing.TestImagePreprocessor(
        227, 227, batch_size, params.num_gpus,
        benchmark_cnn.get_data_type(params))
    preprocessor.set_fake_data(images, labels)
    preprocessor.expected_subset = 'validation' if params.eval else 'train'
    return preprocessor
  else:
    raise ValueError('Invalid --fake_input: %s' % FLAGS.fake_input)
コード例 #2
0
 def _run_benchmark_cnn_with_fake_images(self, params, images, labels):
     logs = []
     benchmark_cnn.log_fn = _print_and_add_to_list(logs)
     bench = benchmark_cnn.BenchmarkCNN(params)
     bench.image_preprocessor = preprocessing.TestImagePreprocessor(
         227, 227, params.batch_size * params.num_gpus, params.num_gpus,
         benchmark_cnn.get_data_type(params))
     bench.dataset._queue_runner_required = True
     bench.image_preprocessor.set_fake_data(images, labels)
     bench.image_preprocessor.expected_subset = ('validation' if params.eval
                                                 else 'train')
     bench.run()
     return logs
コード例 #3
0
def train(config):
    # SETUP
    components = setup.setup(config)
    image_info = components["image_info"]
    heads_info = components["heads_info"]
    output_files = components["output_files"]
    state_folder = components["state_folder"]
    image_folder = components["image_folder"]
    label_folder = components["label_folder"]
    net = components["net"]

    # FORCE RESTART
    if config.output.force_training_restart:
        output_files.clear_output()

    # OPTIMIZER
    optimizer = torch.optim.Adam(net.parameters(), lr=config.optimizer.learning_rate)

    # MODEL
    state_folder = output_files.get_sub_root(output_files.STATE)
    if Model.exists(state_folder):
        # LOAD EXISTING
        model = Model.load(state_folder, net=net, optimizer=optimizer)
    else:
        # CREATE NEW
        # LOSS
        iid_loss = loss.IIDLoss(
            heads=heads_info.order,
            output_files=output_files,
            do_render=config.output.rendering.enabled,
            **config.training.loss
        )

        # STATISTICS
        epoch_stats = utils.EpochStatistics(
            limit=config.training.num_epochs, output_files=output_files
        )

        model = Model(
            state_folder=state_folder,
            heads_info=heads_info,
            net=net,
            optimizer=optimizer,
            loss_fn=iid_loss,
            epoch_statistics=epoch_stats,
        )

    # PREPROCESSING
    # transformation
    transformation = pre.Transformation(**config.transformations)

    # label mapping
    LABEL_FILTERS = {"CocoFewLabels": cocostuff.CocoFewLabels}
    if (
        "label_filter" in config.dataset
        and config.dataset.label_filter.name in LABEL_FILTERS
    ):
        label_filter = LABEL_FILTERS[config.dataset.label_filter.name](
            class_count=heads_info.class_count, **config.dataset.label_filter.parameters
        )
        label_mapper = pre.LabelMapper(mapping_function=label_filter.apply)
    else:
        print("unable to find label mapper, using identity mapping")
        label_mapper = pre.LabelMapper()

    # general preprocessing
    preprocessing = pre.TransformPreprocessing(
        transformation=transformation,
        image_info=image_info,
        label_mapper=label_mapper,
        **config.preprocessor
    )

    # TRAIN DATALOADER
    train_prep = pre.TrainImagePreprocessor(
        image_info=image_info,
        preprocessing=preprocessing,
        output_files=output_files,
        do_render=config.output.rendering.enabled,
        render_limit=config.output.rendering.limit,
    )
    train_dataset = data.ImageFolderDataset(
        image_folder=image_folder,
        preprocessor=train_prep,
        extensions=config.dataset.extensions,
        label_folder=label_folder,
    )
    train_dataloader = data.TrainDataLoader(
        dataset=train_dataset,
        batch_size=config.training.batch_size,
        shuffle=config.training.shuffle,
    )

    # TEST DATALOADER
    test_prep = pre.TestImagePreprocessor(
        image_info=image_info,
        preprocessing=preprocessing,
        output_files=output_files,
        do_render=config.output.rendering.enabled,
        render_limit=config.output.rendering.limit,
    )
    test_dataset = data.ImageFolderDataset(
        image_folder=image_folder,
        preprocessor=test_prep,
        extensions=config.dataset.extensions,
        label_folder=label_folder,
    )
    test_dataloader = data.TestDataLoader(
        dataset=test_dataset, batch_size=config.training.batch_size
    )

    # DATALOADERS
    # TODO link this to arch heads
    dataloaders = {
        "A": train_dataloader,
        "B": train_dataloader,
        "map_assign": test_dataloader,
        "map_test": test_dataloader,
    }

    model.train(loaders=dataloaders)