def feature_extraction_longitudinal(self, img_file): block_size = 16 img = io.imread(img_file) #print img.shape img = preprocessing.adjust_image_size(img, block_size) h, w = img.shape texture_img = preprocessing.FastCartoonTexture(img, sigma=2.5, show=False) contrast_img_guassian = preprocessing.local_constrast_enhancement_gaussian( img) mask = get_maps.get_quality_map_intensity(img) #show.show_mask(mask, img, fname=None, block=True) quality_map, dir_map, fre_map = get_maps.get_quality_map_dict( texture_img, self.dict_all, self.dict_ori, self.dict_spacing, block_size=16, process=False) enh_constrast_img = filtering.gabor_filtering_pixel( contrast_img_guassian, dir_map + math.pi / 2, fre_map, mask=np.ones((h, w), np.int), block_size=16, angle_inc=3) mnt = self.minu_model.run(img, minu_thr=0.2) #show.show_minutiae(img,mnt) des = descriptor.minutiae_descriptor_extraction(img, mnt, self.patch_types, self.des_models, self.patchIndexV, batch_size=128) blkH, blkW = dir_map.shape minu_template = template.MinuTemplate(h=h, w=w, blkH=blkH, blkW=blkW, minutiae=mnt, des=des, oimg=dir_map, mask=mask) rolled_template = template.Template() rolled_template.add_minu_template(minu_template) return rolled_template, texture_img, enh_constrast_img
def feature_extraction_single_rolled(self, img_file, output_path=None, ppi=500): block_size = 16 if not os.path.exists(img_file): return None img = io.imread(img_file, s_grey=True) if ppi != 500: img = cv2.resize(img, (0, 0), fx=500.0 / ppi, fy=500.0 / ppi) img = preprocessing.adjust_image_size(img, block_size) if len(img.shape) > 2: img = rgb2gray(img) h, w = img.shape start = timeit.default_timer() mask = get_maps.get_quality_map_intensity(img) stop = timeit.default_timer() print('time for cropping : %f' % (stop - start)) start = timeit.default_timer() contrast_img = preprocessing.local_constrast_enhancement(img) mnt = self.minu_model.run_whole_image(contrast_img, minu_thr=0.1) stop = timeit.default_timer() minu_time = stop - start print('time for minutiae : %f' % (stop - start)) name = os.path.basename(img_file) show.show_minutiae(img, mnt, block=True) return None start = timeit.default_timer() des = descriptor.minutiae_descriptor_extraction( img, mnt, self.patch_types, self.des_models, self.patchIndexV, batch_size=256, patch_size=self.patch_size) stop = timeit.default_timer() print('time for descriptor : %f' % (stop - start)) dir_map, _ = get_maps.get_maps_STFT(img, patch_size=64, block_size=block_size, preprocess=True) blkH = h // block_size blkW = w // block_size minu_template = template.MinuTemplate(h=h, w=w, blkH=blkH, blkW=blkW, minutiae=mnt, des=des, oimg=dir_map, mask=mask) rolled_template = template.Template() rolled_template.add_minu_template(minu_template) start = timeit.default_timer() # texture templates stride = 16 x = np.arange(24, w - 24, stride) y = np.arange(24, h - 24, stride) virtual_minutiae = [] distFromBg = scipy.ndimage.morphology.distance_transform_edt(mask) for y_i in y: for x_i in x: if (distFromBg[y_i][x_i] <= 24): continue ofY = int(y_i / 16) ofX = int(x_i / 16) ori = -dir_map[ofY][ofX] virtual_minutiae.append([x_i, y_i, ori]) virtual_minutiae = np.asarray(virtual_minutiae) if len(virtual_minutiae) > 1000: virtual_minutiae = virtual_minutiae[:1000] print len(virtual_minutiae) if len(virtual_minutiae) > 3: virtual_des = descriptor.minutiae_descriptor_extraction( contrast_img, virtual_minutiae, self.patch_types, self.des_models, self.patchIndexV, batch_size=128) texture_template = template.TextureTemplate( h=h, w=w, minutiae=virtual_minutiae, des=virtual_des, mask=mask) rolled_template.add_texture_template(texture_template) stop = timeit.default_timer() print('time for texture : %f' % (stop - start)) return rolled_template
def feature_extraction_single_rolled_enhancement(self, img_file): block_size = 16 img = io.imread(img_file) # print img.shape img = preprocessing.adjust_image_size(img, block_size) h, w = img.shape #texture_img = preprocessing.FastCartoonTexture(img, sigma=2.5, show=False) contrast_img_guassian = preprocessing.local_constrast_enhancement_gaussian( img) mask = get_maps.get_quality_map_intensity(img) #show.show_mask(mask, img, fname=None, block=True) start = timeit.default_timer() quality_map, dir_map, fre_map = get_maps.get_quality_map_dict( contrast_img_guassian, self.dict_all, self.dict_ori, self.dict_spacing, block_size=16, process=False) stop = timeit.default_timer() OF_time = stop - start print 'of estimate time: %f' % (OF_time) start = timeit.default_timer() enh_constrast_img = filtering.gabor_filtering_pixel2( contrast_img_guassian, dir_map + math.pi / 2, fre_map, mask=mask, gabor_filters=self.gabor_filters) stop = timeit.default_timer() filtering_time = stop - start print 'filtering time: %f' % (filtering_time) mnt = self.minu_model.run_whole_image(img, minu_thr=0.2) # show.show_minutiae(img,mnt) des = descriptor.minutiae_descriptor_extraction(img, mnt, self.patch_types, self.des_models, self.patchIndexV, batch_size=128) blkH, blkW = dir_map.shape minu_template = template.MinuTemplate(h=h, w=w, blkH=blkH, blkW=blkW, minutiae=mnt, des=des, oimg=dir_map, mask=mask) rolled_template = template.Template() rolled_template.add_minu_template(minu_template) # texture templates stride = 32 x = np.arange(24, w - 24, stride) y = np.arange(24, h - 24, stride) virtual_minutiae = [] distFromBg = scipy.ndimage.morphology.distance_transform_edt(mask) for y_i in y: for x_i in x: if (distFromBg[y_i][x_i] <= 16): continue ofY = int(y_i / 16) ofX = int(x_i / 16) ori = -dir_map[ofY][ofX] # print("ori = " + str(ori)) virtual_minutiae.append([x_i, y_i, ori]) #, distFromBg[y_i,x_i] virtual_minutiae = np.asarray(virtual_minutiae) if len(virtual_minutiae) > 3: virtual_des = descriptor.minutiae_descriptor_extraction( img, virtual_minutiae, self.patch_types, self.des_models, self.patchIndexV, batch_size=128) #show.show_minutiae(img,virtual_minutiae) texture_template = template.TextureTemplate( h=h, w=w, minutiae=virtual_minutiae, des=virtual_des, mask=mask) rolled_template.add_texture_template(texture_template) return rolled_template, enh_constrast_img
def feature_extraction_single_latent(self, img_file, output_dir=None, ppi=500, show_processes=False, show_minutiae=False, minu_file=None): block = False block_size = 16 img0 = io.imread(img_file, mode='L') # / 255.0 img = img0.copy() if ppi != 500: img = cv2.resize(img, (0, 0), fx=500.0 / ppi, fy=500.0 / ppi) img = preprocessing.adjust_image_size(img, block_size) name = os.path.basename(img_file) start = timer() h, w = img.shape if h > 1000 and w > 1000: return None, None # cropping using two dictionary based approach if minu_file is not None: manu_minu = np.loadtxt(minu_file) # # # remove low quality minutiae points input_minu = np.array(manu_minu) input_minu[:, 2] = input_minu[:, 2] / 180.0 * np.pi else: input_minu = [] descriptor_imgs = [] texture_img = preprocessing.FastCartoonTexture(img, sigma=2.5, show=False) STFT_texture_img = preprocessing.STFT(texture_img) contrast_img_guassian = preprocessing.local_constrast_enhancement_gaussian( img) STFT_img = preprocessing.STFT(img) constrast_STFT_img = preprocessing.STFT(contrast_img_guassian) # step 1: enhance the latent based on our autoencoder AEC_img = self.enhancement_model.run_whole_image(STFT_texture_img) quality_map_AEC, dir_map_AEC, fre_map_AEC = get_maps.get_quality_map_dict( AEC_img, self.dict_all, self.dict_ori, self.dict_spacing, R=500.0) blkmask_AEC = quality_map_AEC > 0.45 blkmask_AEC = binary_closing(blkmask_AEC, np.ones( (3, 3))).astype(np.int) blkmask_AEC = binary_opening(blkmask_AEC, np.ones( (3, 3))).astype(np.int) blkmask_SSIM = get_maps.SSIM(STFT_texture_img, AEC_img, thr=0.2) blkmask = blkmask_SSIM * blkmask_AEC blkH, blkW = blkmask.shape mask = cv2.resize(blkmask.astype(float), (block_size * blkW, block_size * blkH), interpolation=cv2.INTER_LINEAR) mask[mask > 0] = 1 minutiae_sets = [] mnt_STFT = self.minu_model[0].run_whole_image(STFT_img, minu_thr=0.05) minutiae_sets.append(mnt_STFT) if show_minutiae: fname = output_dir + os.path.splitext(name)[0] + '_STFT_img.jpeg' show.show_minutiae_sets(STFT_img, [input_minu, mnt_STFT], mask=None, block=block, fname=fname) mnt_STFT = self.minu_model[0].run_whole_image(constrast_STFT_img, minu_thr=0.1) minutiae_sets.append(mnt_STFT) mnt_AEC = self.minu_model[1].run_whole_image(AEC_img, minu_thr=0.25) mnt_AEC = self.remove_spurious_minutiae(mnt_AEC, mask) minutiae_sets.append(mnt_AEC) if show_minutiae: fname = output_dir + os.path.splitext(name)[0] + '_AEC_img.jpeg' show.show_minutiae_sets(AEC_img, [input_minu, mnt_AEC], mask=mask, block=block, fname=fname) enh_contrast_img = filtering.gabor_filtering_pixel2( contrast_img_guassian, dir_map_AEC + math.pi / 2, fre_map_AEC, mask=np.ones((h, w)), block_size=16, angle_inc=3) mnt_contrast = self.minu_model[1].run_whole_image(enh_contrast_img, minu_thr=0.25) mnt_contrast = self.remove_spurious_minutiae(mnt_contrast, mask) minutiae_sets.append(mnt_contrast) enh_texture_img = filtering.gabor_filtering_pixel2( texture_img, dir_map_AEC + math.pi / 2, fre_map_AEC, mask=np.ones((h, w)), block_size=16, angle_inc=3) mnt_texture = self.minu_model[1].run_whole_image(enh_texture_img, minu_thr=0.25) mnt_texture = self.remove_spurious_minutiae(mnt_texture, mask) minutiae_sets.append(mnt_texture) h, w = img.shape latent_template = template.Template() # template set 1: no ROI and enhancement are required # texture image is used for coase segmentation descriptor_imgs = [] descriptor_imgs.append(STFT_img) descriptor_imgs.append(texture_img) descriptor_imgs.append(enh_texture_img) descriptor_imgs.append(enh_contrast_img) mnt2 = self.get_common_minutiae(minutiae_sets, thr=2) mnt3 = self.get_common_minutiae(minutiae_sets, thr=3) minutiae_sets.append(mnt3) minutiae_sets.append(mnt2) if show_minutiae: fname = output_dir + os.path.splitext(name)[0] + '_common_2.jpeg' show.show_minutiae_sets(img, [input_minu, mnt2], mask=mask, block=block, fname=fname) end = timer() print('Time for minutiae extraction: %f' % (end - start)) start = timer() for mnt in minutiae_sets: for des_img in descriptor_imgs: des = descriptor.minutiae_descriptor_extraction( des_img, mnt, self.patch_types, self.des_models, self.patchIndexV, batch_size=128) minu_template = template.MinuTemplate(h=h, w=w, blkH=blkH, blkW=blkW, minutiae=mnt, des=des, oimg=dir_map_AEC, mask=mask) latent_template.add_minu_template(minu_template) end = timer() print('Time for minutiae descriptor generation: %f' % (end - start)) start = timer() # texture templates stride = 16 x = np.arange(24, w - 24, stride) y = np.arange(24, h - 24, stride) virtual_minutiae = [] distFromBg = scipy.ndimage.morphology.distance_transform_edt(mask) for y_i in y: for x_i in x: if (distFromBg[y_i][x_i] <= 16): continue ofY = int(y_i / 16) ofX = int(x_i / 16) ori = -dir_map_AEC[ofY][ofX] virtual_minutiae.append([x_i, y_i, ori]) virtual_minutiae.append([x_i, y_i, math.pi + ori]) virtual_minutiae = np.asarray(virtual_minutiae) texture_template = [] if len(virtual_minutiae) > 3: virtual_des = descriptor.minutiae_descriptor_extraction( enh_contrast_img, virtual_minutiae, self.patch_types, self.des_models, self.patchIndexV, batch_size=128, patch_size=96) texture_template = template.TextureTemplate( h=h, w=w, minutiae=virtual_minutiae, des=virtual_des, mask=None) latent_template.add_texture_template(texture_template) end = timer() print('Time for texture template generation: %f' % (end - start)) return latent_template, texture_template