import os import warnings warnings.filterwarnings('ignore') import numpy as np import preprocessing if __name__ == '__main__': INPUT_FOLDER = 'C:/Users/KNatarajan/Desktop/Project/stage1' OUTPUT_FOLDER = 'C:/Users/KNatarajan/Desktop/Project/output' preprocessing.full_prep(INPUT_FOLDER, OUTPUT_FOLDER)
from utils import * from split_combine import SplitComb from test_detect import test_detect from importlib import import_module import pandas datapath = config_submit['datapath'] prep_result_path = config_submit['preprocess_result_path'] skip_prep = config_submit['skip_preprocessing'] skip_detect = config_submit['skip_detect'] if not skip_prep: testsplit = full_prep( datapath, prep_result_path, n_worker=config_submit['n_worker_preprocessing'], use_existing=config_submit['use_exsiting_preprocessing']) else: testsplit = os.listdir(datapath) print("nodmodel") nodmodel = import_module(config_submit['detector_model'].split('.py')[0]) print("nodmodel.get_model()") config1, nod_net, loss, get_pbb = nodmodel.get_model() print("torch.load") checkpoint = torch.load(config_submit['detector_param']) print("nod_net.load_state_dict") nod_net.load_state_dict(checkpoint['state_dict']) torch.cuda.set_device(0)
from data_classifier import DataBowl3Classifier from utils import * from split_combine import SplitComb from test_detect import test_detect from importlib import import_module import pandas datapath = config_submit['datapath'] prep_result_path = config_submit['preprocess_result_path'] skip_prep = config_submit['skip_preprocessing'] skip_detect = config_submit['skip_detect'] if not skip_prep: testsplit = full_prep(datapath,prep_result_path, n_worker = config_submit['n_worker_preprocessing'], use_existing=config_submit['use_exsiting_preprocessing']) else: testsplit = os.listdir(datapath) nodmodel = import_module(config_submit['detector_model'].split('.py')[0]) config1, nod_net, loss, get_pbb = nodmodel.get_model() checkpoint = torch.load(config_submit['detector_param']) nod_net.load_state_dict(checkpoint['state_dict']) torch.cuda.set_device(0) nod_net = nod_net.cuda() cudnn.benchmark = True nod_net = DataParallel(nod_net) bbox_result_path = './bbox_result'