def main(*args): try: twitter_user, tweet_id, flag_dict = gr(args[0]) except Exception as e: print('No args passed to pipeline.py main()') print(e) twitter_user, tweet_id, flag_dict = gr() prep(tweet_id, flag_dict) dp = data_paths(tweet_id=tweet_id, twitter_user_id=twitter_user) tweet_html = ge(tweet_id) print('\nUploading to Google Big Query...') if flag_dict['big_query'] != 'off': up_gbq(tweet_id) print('Done.')
async def on_message(message): global topic, lan, found, comment_flag #traduction message user if message.content not in ['/help', '/h']: ms, lan = preproc.transin(message.content) msg = preproc.prep(ms) else: msg = message.content if message.author != client.user: #Gestion de la conversation if msg in library.lib and comment_flag == False: if msg in ['hello'] or message.content in ['/help', '/h']: await message.channel.send(file=discord.File( '/home/roger/anaconda3/projetIA/Chat_bot/ChatBot/robot.png' )) res = ct.chatter_bot_conv(msg) #reponse dans la langue user resp = preproc.transout(res, lan) await message.channel.send(resp) else: #Gestion de la recherche en bdd try: if msg not in library.lib and preproc.transout( msg, 'en' ) != 'no' and comment_flag == False and preproc.transout( msg, 'en') != 'yes': topic = topic_clf.predict([msg])[0] print("search", topic_clf.predict([msg])[0]) resp = search.find_question_answer(msg, topic) found = True resp = preproc.transout(resp, lan) await message.channel.send(resp[:2000]) except NameError: if preproc.transout(msg, 'en') != 'no' and comment_flag == False: response = preproc.transout( 'Pouvez-vous m\'en dire plus ?', lan) await message.channel.send(response) # fin de conversation if found == True and msg not in library.lib and preproc.transout( msg, 'en') != 'no' and preproc.transout( msg, 'en') != 'yes' and comment_flag == False: resp = preproc.transout(library.end_of_conv[0], lan) + library.end_of_conv[1] found = False await message.channel.send(resp) if preproc.transout(msg, 'en') == 'no' and comment_flag == False: resp = preproc.transout(library.bot_end_conv[0], lan) await message.channel.send(resp) comment_flag = True if preproc.transout(msg, 'en') != 'no' and comment_flag == True: feed_back.add_feeback({ "message": message.content, "date": str(datetime.date.today()) }) comment_flag = False
def run(): df_pre = prep() df_sampled = sampler(df_pre) # df_reduced_dims = reduction(df_sampled) # quick_grapher.graph(df_reduced_dims) # Model fitting with SVM #df_B = svc(df_sampled) df_C = KNN(df_sampled)
def main(): rw = readwrite() trainDataset = rw.readcsv(trainFilePath) prepros_object = prep(test_first_level_split, test_second_level_split, trainDataset) (first_train, first_test, second_train, second_test) = prepros_object.labelPaths(Routine_k) #each of the above four are comprised of a triple: (data, path, routine/non-routine) #Build the model and store it on disk topLevelClassifier(first_train, first_test, DirToDumpModelsTop) secondLevelClassifier(second_train, second_test, DirToDumpModelsSecond)
def run(): df_pre = prep() #df_B = svc(df_pre) #df_C = KNN(df_pre) df_D = NN(df_pre)