def main(): start = "2003-01-01" end = "2018-01-01" hist.get_stock_data("AAPL", start_date=start, end_date=end) process = DataProcessing("stock_prices.csv", 0.9) process.gen_test(10) process.gen_train(10) X_train = process.X_train / 200 Y_train = process.Y_train / 200 X_test = process.X_test / 200 Y_test = process.Y_test / 200 model = tf.keras.models.Sequential() model.add(tf.keras.layers.Dense(100, activation=tf.nn.relu)) model.add(tf.keras.layers.Dense(100, activation=tf.nn.relu)) model.add(tf.keras.layers.Dense(1, activation=tf.nn.relu)) model.compile(optimizer="adam", loss="mean_squared_error") model.fit(X_train, Y_train, epochs=100) print(model.evaluate(X_test, Y_test))
def main(): process = DataProcessing("sales.csv", 0.9) process.gen_test(10) process.gen_train(10) X_train = process.X_train.reshape((239, 10, 1)) / 200 Y_train = process.Y_train / 200 X_test = process.X_test.reshape(9, 10, 1) / 200 Y_test = process.Y_test / 200 model = tf.keras.Sequential() model.add(KL.LSTM(20, input_shape=(10, 1), return_sequences=True)) model.add(KL.LSTM(20)) model.add(KL.Dense(1, activation=tf.nn.relu)) model.compile(optimizer="adam", loss="mean_squared_error") history = model.fit(X_train, Y_train, validation_data=(X_test, Y_test), epochs=50, verbose=0) print(model.evaluate(X_test, Y_test)) data = pandas.read_csv('sales_with_header.csv', sep=',').sample(n=10) prices = data["Price"] X_predict = np.array(prices).reshape((1, 10, 1)) / 200 print("Predictions" + str(model.predict(X_predict) * 200)) # If instead of a full backtest, you just want to see how accurate the model is for a particular prediction, run this: # data = pdr.get_data_yahoo("AAPL", "2017-12-19", "2018-01-03") # stock = data["Adj Close"] # X_predict = np.array(stock).reshape((1, 10)) / 200 # print(model.predict(X_predict)*200) pyplot.title('Loss / Mean Squared Error') pyplot.plot(history.history['loss'], label='train') pyplot.plot(history.history['val_loss'], label='test') pyplot.legend() pyplot.show()
import tensorflow as tf from preprocessing import DataProcessing import pandas_datareader.data as pdr import yfinance as fix import matplotlib.pyplot as plt import WXBizSendMsg fix.pdr_override() start = "2000-01-01" end = "2019-08-22" stock = "000001.SS" hist.get_stock_data(stock, start_date=start, end_date=end) process = DataProcessing("stock_prices.csv", 0.9) process.gen_test(10) process.gen_train(10) X_train = process.X_train / np.array([process.value_max, process.volume_max ]) # 归一化, 包括Adj Close 和 Volume Y_train = process.Y_train / process.value_max X_test = process.X_test / np.array([process.value_max, process.volume_max]) Y_test = process.Y_test / process.value_max model = tf.keras.Sequential() model.add(tf.keras.layers.LSTM(20, input_shape=(10, 2), return_sequences=True)) model.add(tf.keras.layers.LSTM(20)) model.add(tf.keras.layers.Dense(1))
import matplotlib.pyplot as plt import quandl as quandl import keras from preprocessing import DataProcessing # live data extraction TICKER = "WGC/GOLD_DAILY_USD" data = quandl.get("WGC/GOLD_DAILY_USD", authtoken="FUw5PPY7UX5AW-svaskC") data = data[37:] # before index 37, prices were not daily # optimizable variables PERCENTAGE_OF_DATA_FOR_TRAINING = 0.8 SEQ_LENGTH = 30 N_DAY_FORECAST = 7 data_processor = DataProcessing( data, PERCENTAGE_OF_DATA_FOR_TRAINING, N_DAY_FORECAST) data_processor.generate_validation_set(SEQ_LENGTH) data_processor.generate_training_set(SEQ_LENGTH) # typically normalize by substracting average and dividing by standard deviation # but we want to use the output and check against live trade data thus not entirely feasible # hence simply divide by a constant to ensure weights in network do not become too large NORMALIZATION_CONSTANT = 500 # "normalization" of training data X_training = data_processor.X_training.reshape( len(data_processor.X_training), SEQ_LENGTH, 1) / NORMALIZATION_CONSTANT Y_training = data_processor.Y_training / NORMALIZATION_CONSTANT # "normalization" of validation data X_validation = data_processor.X_validation.reshape(
import get_prices as hist import tensorflow as tf from preprocessing import DataProcessing # import pandas_datareader.data as pdr if using the single test below import pandas_datareader.data as pdr import yfinance as fix import numpy as np #import matplotlib.pyplot as plt fix.pdr_override() start = "2003-01-01" end = "2018-01-01" hist.get_stock_data("AAPL", start_date=start, end_date=end) process = DataProcessing("stock_prices.csv", 0.9) process.gen_test(10) #滑动窗口构建测试样本 process.gen_train(10) #滑动窗口构建训练样本 X_train = process.X_train / 200 #归一化方法?是否比x' = (x-min/max-min)更靠谱?min=0,max=200 Y_train = process.Y_train / 200 X_test = process.X_test / 200 Y_test = process.Y_test / 200 model = tf.keras.models.Sequential() model.add(tf.keras.layers.Dense(32, activation=tf.nn.relu)) model.add(tf.keras.layers.Dense(64, activation=tf.nn.relu)) model.add(tf.keras.layers.Dense(1, activation=tf.nn.relu)) model.compile(optimizer="adam", loss="mean_squared_error")