コード例 #1
0
def predict(data):

    # extract first letter from cabin

    pf.extract_cabin_letter(data, 'cabin')

    # impute NA categorical
    for var in ['age', 'fare']:
        pf.add_missing_indicator(data, var)

    # impute NA numerical

    for var in config.CATEGORICAL_VARS:
        pf.impute_na(data, var)

    # Group rare labels
    for var in config.CATEGORICAL_VARS:
        pf.remove_rare_labels(data, var, config.FREQUENT_LABELS)

    # encode variables
    data = pf.encode_categorical(df, config.CATEGORICAL_VARS)

    # scale variables

    data = pf.scale_features(data, config.OUTPUT_SCALER_PATH)

    # make predictions
    predictions, _ = pf.predict(data, config.OUTPUT_MODEL_PATH)

    return predictions
コード例 #2
0
ファイル: score.py プロジェクト: annplaube/mldeploy
def predict(data):

    # extract first letter from cabin
    pf.extract_cabin_letter(data, 'cabin')

    # impute NA numerical
    for var in config.NUMERICAL_TO_IMPUTE:
        pf.add_missing_indicator(data, var)
        pf.impute_na(data, var, config.IMPUTATION_DICT[var])

    # impute NA categorical
    for var in config.CATEGORICAL_VARS:
        pf.impute_na(data, var)

    # Group rare labels
    for var, labels in config.FREQUENT_LABELS.items():
        pf.remove_rare_labels(data, var, labels)

    # encode variables
    for var in config.CATEGORICAL_VARS:
        data = pf.encode_categorical(data, var)

    # check all dummies were added
    pf.check_dummy_variables(data, config.DUMMY_VARIABLES)

    data = data[config.ALL_VARS]

    # scale variables
    data = pf.scale_features(data, config.OUTPUT_SCALER_PATH)

    # make predictions
    predictions = pf.predict(data, config.OUTPUT_MODEL_PATH)

    return predictions
コード例 #3
0
def predict(data):

    # impute NA
    for var in config.CATEGORICAL_TO_IMPUTE:
        data[var] = pf.impute_na(data, var, replacement='Missing')

    data[config.NUMERICAL_TO_IMPUTE] = pf.impute_na(
        data, config.NUMERICAL_TO_IMPUTE, replacement=config.LOTFRONTAGE_MODE)

    # capture elapsed time
    data[config.YEAR_VARIABLE] = pf.elapsed_years(data,
                                                  config.YEAR_VARIABLE,
                                                  ref_var='YrSold')

    # log transform numerical variables
    for var in config.NUMERICAL_LOG:
        data[var] = pf.log_transform(data, var)

    # Group rare labels
    for var in config.CATEGORICAL_ENCODE:
        data[var] = pf.remove_rare_labels(data, var,
                                          config.FREQUENT_LABELS[var])

    # encode variables
    for var in config.CATEGORICAL_ENCODE:
        data[var] = pf.encode_categorical(data, var,
                                          config.ENCODING_MAPPINGS[var])

    # scale variables
    data = pf.scale_features(data[config.FEATURES], config.OUTPUT_SCALER_PATH)

    # make predictions
    predictions = pf.predict(data, config.OUTPUT_MODEL_PATH)

    return predictions
コード例 #4
0
ファイル: score.py プロジェクト: rmania/ml_deployment
def predict(data):
    
    # extract first letter from cabin
    data['cabin'] = pf.extract_cabin_letter(data, var='cabin')

    # impute NA categorical
    for var in config.CATEGORICAL_VARS:
        data[var] = pf.impute_na(data, var, replacement='Missing')
    
    
    # impute NA numerical
    for var in config.NUMERICAL_TO_IMPUTE:
        data[var] = pf.add_missing_indicator(data, var)
    
    
    # Group rare labels
    for var in config.CATEGORICAL_VARS:
        data[var] = pf.remove_rare_labels(data, var, frequent_labels = config.FREQUENT_LABELS[var])
    
    # encode variables
    data = pf.encode_categorical(data, var=config.CATEGORICAL_VARS)
        
        
    # check all dummies were added
    data = pf.check_dummy_variables(data, dummy_list = config.DUMMY_VARIABLES)
    
    # scale variables
    data = pf.scale_features(data[config.FEATURES],
                             config.OUTPUT_SCALER_PATH)
    
    # make predictions
    predictions = pf.predict(data, config.OUTPUT_MODEL_PATH)

    
    return predictions
コード例 #5
0
def predict(data):

    # extract first letter from cabin
    data["cabin"] = pf.extract_cabin_letter(data, "cabin")

    # impute NA categorical
    for var in config.CATEGORICAL_VARS:
        data[var] = pf.impute_na(data, var, replacement="Missing")

    # impute NA numerical
    for var in config.NUMERICAL_TO_IMPUTE:
        median_val = data[var].median()
        data[var] = pf.impute_na(data, var, replacement=median_val)

    # Group rare labels
    for var in config.CATEGORICAL_VARS:
        data[var] = pf.remove_rare_labels(data, var, config.FREQUENT_LABELS[var])

    # encode variables
    for var in config.CATEGORICAL_VARS:
        data = pf.encode_categorical(data, var)

    # check all dummies were added
    data = pf.check_dummy_variables(data, config.DUMMY_VARIABLES)

    # scale variables
    data = pf.scale_features(data, config.OUTPUT_SCALER_PATH)

    # make predictions
    predictions = pf.predict(data, config.OUTPUT_MODEL_PATH)
    return predictions
コード例 #6
0
ファイル: score.py プロジェクト: overdrivek/MLDeployment
def predict(data):
    
    # extract first letter from cabin
    X_test = pf.extract_cabin_letter(data, config.IMPUTATION_DICT['cabin_variable'])

    # impute NA categorical
    X_test = pf.add_missing_indicator(X_test, config.CATEGORICAL_VARS)
    
    
    # impute NA numerical
    for var in config.NUMERICAL_TO_IMPUTE:
        X_test = pf.impute_na(X_test,var,replace_by=config.IMPUTATION_DICT[var], add_na_columns=True)

    
    # Group rare labels
    X_test = pf.remove_rare_labels(X_test, config.FREQUENT_LABELS)
    
    # encode variables
    for var in config.CATEGORICAL_VARS:
        X_test = pf.encode_categorical(X_test, var)
    X_test.drop(labels=config.CATEGORICAL_VARS, axis=1, inplace=True)
        
    # check all dummies were added
    X_test = pf.check_dummy_variables(X_test, config.DUMMY_VARIABLES)

    
    # scale variables
    X_test = pf.scale_features(X_test, config.OUTPUT_SCALER_PATH)
    
    # make predictions
    predictions = pf.predict(X_test,config.OUTPUT_MODEL_PATH)

    
    return predictions
コード例 #7
0
def predict(data):

    # extract first letter from cabin
    data['cabin'] = pf.extract_cabin_letter(data, 'cabin')

    # impute NA categorical
    data[config.CATEGORICAL_VARS] = pf.impute_na(data[config.CATEGORICAL_VARS],
                                                 'Missing')

    # impute NA numerical
    data[config.NUMERICAL_TO_IMPUTE] = pf.impute_na(
        data[config.NUMERICAL_TO_IMPUTE], 'Numerical')

    # Group rare labels
    for var in config.CATEGORICAL_VARS:
        data[var] = pf.remove_rare_labels(data, var,
                                          config.FREQUENT_LABELS[var])

    # encode variables
    data = pf.encode_categorical(data, config.CATEGORICAL_VARS)
    print(data.shape)

    # check all dummies were added
    data = pf.check_dummy_variables(data, config.DUMMY_VARIABLES)
    print(data.shape)

    # scale variables
    data = pf.scale_features(data, config.OUTPUT_SCALER_PATH)

    # make predictions
    predictions = pf.predict(data, config.OUTPUT_MODEL_PATH)

    return predictions
コード例 #8
0
def predict(data):
    # impute categorical variables
    for var in config.CATEGORICAL_VARS:
        data[var] = pf.impute_na(data, var, replacement='Missing')

    # impute numerical variables
    for var in config.NUMERICAL_TO_IMPUTE:

        # add missing indicator first
        data[var + '_na'] = pf.add_missing_indicator(data, var)

        # impute NA
        data[var] = pf.impute_na(data, var,
                                 replacement=config.IMPUTATION_DICT[var])

    # Group rare labels
    for var in config.CATEGORICAL_VARS:
        data[var] = pf.remove_rare_labels(data, var,
                                          config.FREQUENT_LABELS[var])
    # encode categorical variables
    for var in config.CATEGORICAL_VARS:
        data = pf.encode_categorical(data, var)

    # check all dummies were added
    data = pf.check_dummy_variables(data, config.DUMMY_VARIABLES)

    # scale variables
    scaler = pf.scale_features(data,
                               config.OUTPUT_SCALER_PATH)
    # make predictions
    predictions = pf.predict(data, config.OUTPUT_MODEL_PATH)

    return predictions
コード例 #9
0
def predict(data):

    # extract first letter from cabin
    data["cabin"] = pf.extract_cabin_letter(data, "cabin")

    # impute NA categorical
    for var in config.CATEGORICAL_VARS:
        data[var] = pf.impute_na(data, var, replacement='Missing')

    # impute NA numerical
    for var in config.NUMERICAL_TO_IMPUTE:
        data[var + "_na"] = pf.add_missing_indicator(data, var)
        median_train_var = config.IMPUTATION_DICT[var]
        data[var] = pf.impute_na(data, var, replacement=median_train_var)

    # Group rare labels
    for var in config.CATEGORICAL_VARS:
        freq_labels = config.FREQUENT_LABELS[var]
        # Remove rare labels from both train and test set
        data[var] = pf.remove_rare_labels(data, var, freq_labels)

    # encode variables
    for var in config.CATEGORICAL_VARS:
        data = pf.encode_categorical(data, var)

    # check all dummies were added
    data = pf.check_dummy_variables(data, config.DUMMY_VARIABLES)

    # scale variables
    data = pf.scale_features(data, config.OUTPUT_SCALER_PATH)

    # make predictions
    predictions = pf.predict(data, config.OUTPUT_MODEL_PATH)

    return predictions
コード例 #10
0
def predict(data):

    # extract first letter from cabin
    data[config.EXTRACT_VARIABLE] = pf.extract_cabin_letter(
        data, config.EXTRACT_VARIABLE)

    # impute NA categorical
    for var in config.CATEGORICAL_TO_ENCODE:
        data[var] = pf.impute_na(data, var, replacement='Missing')

    # impute NA numerical
    for var in config.NUMERICAL_TO_IMPUTE:
        if (var == 'age'):
            data[var] = pf.add_missing_indicator(data, var, config.AGE_MEDIAN)
        else:
            data[var] = pf.add_missing_indicator(data, var, config.FARE_MEDIAN)

    # Group rare labels
    for var in config.CATEGORICAL_TO_ENCODE:
        data[var] = pf.remove_rare_labels(data, var, config.RARE_VALUE)

    # encode variables
    for var in config.CATEGORICAL_TO_ENCODE:
        data = pf.encode_categorical(data, var)

    # check all dummies were added
    pf.check_dummy_variables(data, config.DUMMY_VARIABLE)

    # scale variables
    data = pf.scale_features(data[config.FEATURES], config.OUTPUT_SCALER_PATH)

    # make predictions
    predictions = pf.predict(data, config.OUTPUT_MODEL_PATH)

    return predictions
コード例 #11
0
def predict(data):
    
    # extract first letter from cabin
    data = pf.extract_cabin_letter(data, 'cabin')


    # impute NA categorical
    for var in config.CATEGORICAL_VARS:
        data = pf.impute_na(data, var, config.IMPUTATION_DICT)    
    
    # impute NA numerical
    for var in ['age', 'fare']:
        data = pf.impute_na(data, var, config.IMPUTATION_DICT)
    
    # add indicator variables
    for var in ['age', 'fare']:
        data = pf.add_missing_indicator(data, var)
    
    
    # Group rare labels
    for var in config.CATEGORICAL_VARS:
        data = pf.remove_rare_labels(data, config.FREQUENT_LABELS, var)
    
    # encode variables
    for var in config.CATEGORICAL_VARS:
        data = pf.encode_categorical(data, var)
        
        
    # check all dummies were added
    data = pf.check_dummy_variables(data, config.DUMMY_VARIABLES)

    
    # scale variables
    data = pf.scale_features(data, config.ORDERED_COLUMNS, config.OUTPUT_SCALER_PATH)

    
    # make predictions
    predictions = pf.predict(data, config.ORDERED_COLUMNS, config.OUTPUT_MODEL_PATH)

    
    return predictions
コード例 #12
0
def predict(data):
    
    # imputar datos faltantes
    for var in config.CATEGORICAL_TO_IMPUTE:
        data[var] = pf.impute_na(data, var, replacement='Missing')
    
    data[config.NUMERICAL_TO_IMPUTE] = pf.impute_na(data,
           config.NUMERICAL_TO_IMPUTE,
           replacement=config.LOTFRONTAGE_MODE)
    
    
    # intervalos de tiempo
    data[config.YEAR_VARIABLE] = pf.elapsed_years(data,
           config.YEAR_VARIABLE, ref_var='YrSold')
    
    
    # transformación logarítmica
    for var in config.NUMERICAL_LOG:
       data[var] = pf.log_transform(data, var)
    
    
    # agrupación de etiquetas poco frecuentes
    for var in config.CATEGORICAL_ENCODE:
        data[var] = pf.remove_rare_labels(data, var, config.FREQUENT_LABELS[var])
    
    # codificación de var. categóricas
    for var in config.CATEGORICAL_ENCODE:
        data[var] = pf.encode_categorical(data, var,
               config.ENCODING_MAPPINGS[var])
    
    
    # escalar variables
    data = pf.scale_features(data[config.FEATURES],
                             config.OUTPUT_SCALER_PATH)
    
    # obtener predicciones
    predictions = pf.predict(data, config.OUTPUT_MODEL_PATH)
    
    return predictions
コード例 #13
0
def predict(data):

    data = pf.load_data(config.PATH_TO_DATASET)

    X_train, X_test, y_train, y_test = pf.divide_train_test(data, config.TARGET)
    data = X_test.copy()

        # impute categorical variables
    data = pf.add_missing_indicator(data, config.CATEGORICAL_VARS)

    # extract first letter from cabin
    data = pf.extract_cabin_letter(data, 'cabin')

    # impute NA categorical
    data = pf.impute_na(data, config.CATEGORICAL_VARS)

    # impute NA numerical
    data = pf.add_missing_indicator(data, config.NUMERICAL_TO_IMPUTE)
    data = pf.impute_num(data, config.NUMERICAL_TO_IMPUTE)

    # Group rare labels
    data = pf.remove_rare_labels(data, config.CATEGORICAL_VARS)

    # encode variables
    data, data_features = pf.encode_categorical(data, config.CATEGORICAL_VARS)

    print(data.head(1))
    
    # check all dummies were added
    data = pf.check_dummy_variables(data, config.DUMMY_VARIABLES)
    
    # scale variables
    data = pf.scale_features(data, config.OUTPUT_SCALER_PATH)

    # make predictions
    class_, pred = pf.predict(data, config.OUTPUT_MODEL_PATH)

    
    return class_
コード例 #14
0
def predict(data):

    # extract first letter from cabin
    data['cabin'] = pf.extract_cabin_letter(data, 'cabin')

    # impute NA categorical
    for el in config.CATEGORICAL_VARS:
        data[el] = pf.impute_na(data, el, replacement='Missing')

    # impute NA numerical
    for el in config.NUMERICAL_TO_IMPUTE:

        # add missing indicator first
        data[el + '_NA'] = pf.add_missing_indicator(data, el)

        # impute NA
        data[el] = pf.impute_na(data,
                                el,
                                replacement=config.IMPUTATION_DICT[el])

    # Group rare labels
    for el in config.CATEGORICAL_VARS:
        data[el] = pf.remove_rare_labels(data, el, config.FREQUENT_LABELS[el])

    # encode variables
    for el in config.CATEGORICAL_VARS:
        data = pf.encode_categorical(data, el)

    # check all dummies were added
    data = pf.check_dummy_variables(data, config.DUMMY_VARIABLES)

    # scale variables
    data = pf.scale_features(data, config.OUTPUT_SCALER_PATH)

    # make predictions
    predictions = pf.predict(data, config.OUTPUT_MODEL_PATH)

    return predictions
コード例 #15
0
def predict(data):

    # extract first letter from cabin
    data = pf.extract_cabin_letter(data, 'cabin')

    # impute NA categorical
    for var in config.CATEGORICAL_VARS:
        data[var] = pf.impute_na(data, var, replacement='Missing')

    # impute NA numerical
    for var in config.NUMERICAL_TO_IMPUTE:
        data[var] = pf.impute_na(data,
                                 var,
                                 replacement=config.IMPUTATION_DICT[var])

    # Group rare labels
    for var in config.CATEGORICAL_VARS:
        data[var] = pf.remove_rare_labels(data, var,
                                          config.FREQUENT_LABELS[var])

    # encode variables
    for var in config.CATEGORICAL_VARS:
        data = pf.encode_categorical(data, var)

    # check all dummies were added
    for var in config.DUMMY_VARIABLES:
        if (var not in X_train.columns):
            data[var] = 0

    # scale variables
    data = pf.scale_features(data, config.OUTPUT_SCALER_PATH)

    # make predictions
    predictions = pf.predict(data, config.OUTPUT_MODEL_PATH)

    return predictions
コード例 #16
0
ファイル: train.py プロジェクト: overdrivek/MLDeployment
X_train = pf.add_missing_indicator(X_train, config.CATEGORICAL_VARS)
X_test = pf.add_missing_indicator(X_test, config.CATEGORICAL_VARS)

# impute numerical variable
for var in config.NUMERICAL_TO_IMPUTE:
    X_train = pf.impute_na(X_train,
                           var,
                           replace_by=config.IMPUTATION_DICT[var],
                           add_na_columns=True)
    X_test = pf.impute_na(X_test,
                          var,
                          replace_by=config.IMPUTATION_DICT[var],
                          add_na_columns=True)

# Group rare labels
X_train = pf.remove_rare_labels(X_train, config.FREQUENT_LABELS)
X_test = pf.remove_rare_labels(X_test, config.FREQUENT_LABELS)

# encode categorical variables
for var in config.CATEGORICAL_VARS:
    X_train = pf.encode_categorical(X_train, var)
    X_test = pf.encode_categorical(X_test, var)
X_train.drop(labels=config.CATEGORICAL_VARS, axis=1, inplace=True)
X_test.drop(labels=config.CATEGORICAL_VARS, axis=1, inplace=True)

# check all dummies were added
X_train = pf.check_dummy_variables(X_train, config.DUMMY_VARIABLES)
X_test = pf.check_dummy_variables(X_test, config.DUMMY_VARIABLES)

# train scaler and save
pf.train_scaler(X_train, config.OUTPUT_SCALER_PATH)
コード例 #17
0
    X_train[var + '_na'] = pf.add_missing_indicator(X_train, var)
    X_train[var] = pf.impute_na(X_train, var)

    X_test[var + '_na'] = pf.add_missing_indicator(X_test, var)
    X_test[var] = pf.impute_na(X_test, var)

# impute numerical variable
for var in config.NUMERICAL_TO_IMPUTE:
    X_train[var + '_na'] = pf.add_missing_indicator(X_train, var)
    X_train[var] = pf.impute_na(X_train, var, config.IMPUTATION_DICT[var])
    X_test[var + '_na'] = pf.add_missing_indicator(X_test, var)
    X_test[var] = pf.impute_na(X_test, var, config.IMPUTATION_DICT[var])

# Group rare labels
for var in config.CATEGORICAL_VARS:
    X_train[var] = pf.remove_rare_labels(X_train, var,
                                         config.FREQUENT_LABELS[var])
    X_test[var] = pf.remove_rare_labels(X_test, var,
                                        config.FREQUENT_LABELS[var])

# encode categorical variables
for var in config.CATEGORICAL_VARS:
    X_train = pf.encode_categorical(X_train, var)
    X_test = pf.encode_categorical(X_test, var)

# check all dummies were added
X_train = pf.check_dummy_variables(X_train, config.DUMMY_VARIABLES)
X_test = pf.check_dummy_variables(X_test, config.DUMMY_VARIABLES)

# train scaler and save
scaler = pf.train_scaler(X_train, config.OUTPUT_SCALER_PATH)
コード例 #18
0
# impute categorical variables
for var in config.CATEGORICAL_TO_ENCODE:
    X_train[var] = pf.impute_na(X_train, var, replacement='Missing')


# impute numerical variable
for var in config.NUMERICAL_TO_IMPUTE:
    if (var == 'age'):
        X_train[var] = pf.add_missing_indicator(X_train, var, config.AGE_MEDIAN)
    else:
        X_train[var] = pf.add_missing_indicator(X_train, var, config.FARE_MEDIAN)


# Group rare labels
for var in config.CATEGORICAL_TO_ENCODE:
    X_train[var] = pf.remove_rare_labels(X_train, var, config.RARE_VALUE)


# encode categorical variables
for var in config.CATEGORICAL_TO_ENCODE:
    X_train = pf.encode_categorical(X_train, var)


# check all dummies were added
pf.check_dummy_variables(X_train, config.DUMMY_VARIABLE)


# train scaler and save
scaler = pf.train_scaler(X_train[config.FEATURES],
                         config.OUTPUT_SCALER_PATH)
コード例 #19
0
# impute categorical variables
cat_vars = config_file[2]['Feature_Groups'].get('categorical_vars')
num_vars = config_file[2]['Feature_Groups'].get('numerical_to_impute')
for var in cat_vars:
    X_train[var] = pf.impute_na(X_train, var, 'Missing')

# impute numerical variables
medians = config_file[1]['Parameters'].get('imputation_dict')
for var in num_vars:
    X_train = pf.add_missing_indicator(X_train, var)
    X_train[var] = pf.impute_na(X_train, var, medians.get(var))

## Group rare labels
frequent_list = config_file[1]['Parameters'].get('frequent_labels')
for var in cat_vars:
    X_train[var] = pf.remove_rare_labels(X_train, var, frequent_list)

# encode categorical variables
dummies = config_file[1]['Parameters'].get('dummy_variables')
for var in cat_vars:
    X_train = pf.encode_categorical(X_train, var)

# check all dummies were added
X_train = pf.check_dummy_variables(X_train, dummies)

# train scaler and save
output_path = config_file[0]['Paths'].get('output_scaler_path')
output_model_path = config_file[0]['Paths'].get('output_model_path')
scaler = pf.train_scaler(X_train, output_path)

# scale train set
コード例 #20
0
for var in config.CATEGORICAL_VARS:
    X_train[var] = pf.impute_na(X_train, var)

# impute numerical variable

for var in config.NUMERICAL_TO_IMPUTE:
    X_train = pf.add_missing_indicator(X_train, var)
    X_train[var] = pf.impute_na(X_train,
                                var,
                                value=config.IMPUTATION_DICT[var])

# Group rare labels

for col in config.CATEGORICAL_VARS:
    X_train[col] = pf.remove_rare_labels(
        X_train, col, freq_labels=config.FREQUENT_LABELS[col])

# encode categorical variables

oh = pf.train_encoder(X_train, config.CATEGORICAL_VARS,
                      config.OUTPUT_ENCODER_PATH)
X_train = pf.encode_categorical(X_train, config.CATEGORICAL_VARS,
                                config.OUTPUT_ENCODER_PATH)
print(X_train.shape)
print(X_train.head())
# check all dummies were added

X_train = pf.check_dummy_variables(X_train, config.DUMMY_VARIABLES)

# train scaler and save
コード例 #21
0
# divide data set
X_train, X_test, y_train, y_test = pf.divide_train_test(df, config.TARGET)

# get first letter from cabin variable
X_train = pf.extract_cabin_letter(X_train, 'cabin')

# impute categorical variables
X_train = pf.add_missing_indicator(X_train, config.CATEGORICAL_VARS)
X_train = pf.impute_na(X_train, config.CATEGORICAL_VARS)

# impute numerical variable
X_train = pf.add_missing_indicator(X_train, config.NUMERICAL_TO_IMPUTE)
X_train = pf.impute_num(X_train, config.NUMERICAL_TO_IMPUTE)

# Group rare labels
X_train = pf.remove_rare_labels(X_train, config.CATEGORICAL_VARS)

# encode categorical variables
X_train, X_train_features = pf.encode_categorical(X_train,
                                                  config.CATEGORICAL_VARS)

# check dummy variables
X_check

# train scaler and save
pf.train_scaler(X_train, config.OUTPUT_SCALER_PATH)

# scale train set
X_train = pf.scale_features(X_train, config.OUTPUT_SCALER_PATH)

# train model and save
コード例 #22
0
xtrain, xtest, ytrain, ytest = pf.divide_train_test(df, config.TARGET)

# # get first letter from cabin variable
xtrain['cabin'] = pf.extract_cabin_letter(xtrain, 'cabin')

# # impute categorical variables
xtrain[config.CATEGORICAL_VARS] = pf.impute_na(xtrain[config.CATEGORICAL_VARS],
                                               'Missing')

# # impute numerical variable
xtrain[config.NUMERICAL_TO_IMPUTE] = pf.impute_na(
    xtrain[config.NUMERICAL_TO_IMPUTE], 'Numerical')

# # Group rare labels
for var in config.CATEGORICAL_VARS:
    xtrain[var] = pf.remove_rare_labels(xtrain, var,
                                        config.FREQUENT_LABELS[var])

# # encode categorical variables
xtrain = pf.encode_categorical(xtrain, config.CATEGORICAL_VARS)

# # check all dummies were added
xtrain = pf.check_dummy_variables(xtrain, config.DUMMY_VARIABLES)

# # train scaler and save
scaler = pf.train_scaler(xtrain, config.OUTPUT_SCALER_PATH)

# # scale train set
xtrain = pf.scale_features(xtrain, config.OUTPUT_SCALER_PATH)

# train model and save
pf.train_model(xtrain, ytrain, config.OUTPUT_MODEL_PATH)
コード例 #23
0
# get first letter from cabin variable

pf.extract_cabin_letter(X_train, 'cabin')

# impute NA categorical
for var in ['age', 'fare']:
    pf.add_missing_indicator(X_train, var)

# impute NA numerical

for var in config.CATEGORICAL_VARS:
    pf.impute_na(X_train, var)

# Group rare labels
for var in config.CATEGORICAL_VARS:
    pf.remove_rare_labels(X_train, var, config.FREQUENT_LABELS)

# encode variables
X_train = pf.encode_categorical(X_train, config.CATEGORICAL_VARS)

# scale variables

pf.train_scaler(X_train, config.OUTPUT_SCALER_PATH)
pf.scale_features(X_train, config.OUTPUT_SCALER_PATH)
pf.train_model(X_train, y_train, config.OUTPUT_MODEL_PATH)

# train scaler and save

# scale train set

# train model and save
コード例 #24
0
# get first letter from cabin variable
X_train.loc[:, "cabin"] = pf.extract_cabin_letter(X_train, "cabin")

# impute categorical variables
for var in config.CATEGORICAL_VARS:
    X_train.loc[:, var] = pf.impute_na(X_train, var, replacement="Missing")

# impute numerical variable
for var in config.NUMERICAL_TO_IMPUTE:
    median_val = X_train[var].median()
    X_train.loc[:, var] = pf.impute_na(X_train, var, replacement=median_val)

# Group rare labels
for var in config.CATEGORICAL_VARS:
    X_train.loc[:, var] = pf.remove_rare_labels(X_train, var,
                                                config.FREQUENT_LABELS[var])

# encode categorical variables
for var in config.CATEGORICAL_VARS:
    X_train = pf.encode_categorical(X_train, var)

# check all dummies were added
X_train = pf.check_dummy_variables(X_train, config.DUMMY_VARIABLES)

# train scaler and save
scaler = pf.train_scaler(X_train, config.OUTPUT_SCALER_PATH)

# scale train set
X_train = scaler.transform(X_train)

# train model and save
コード例 #25
0
# impute categorical variables
for var in config.CATEGORICAL_VARS:
    X_train[var] = pf.impute_na(X_train, var, replacement='Missing')

# impute numerical variable with median
for var in config.NUMERICAL_TO_IMPUTE:
    X_train[var + "_na"] = pf.add_missing_indicator(X_train, var)
    median_train_var = config.IMPUTATION_DICT[var]
    X_train[var] = pf.impute_na(X_train, var, replacement=median_train_var)

# Group rare labels
for var in config.CATEGORICAL_VARS:
    # Frequent labels found in Train set
    freq_labels = config.FREQUENT_LABELS[var]
    # Remove rare labels from both train and test set
    X_train[var] = pf.remove_rare_labels(X_train, var, freq_labels)

# encode categorical variables
for var in config.CATEGORICAL_VARS:
    X_train = pf.encode_categorical(X_train, var)

# check all dummies were added
X_train = pf.check_dummy_variables(X_train, config.DUMMY_VARIABLES)

# train scaler and save
scaler = pf.train_scaler(X_train, config.OUTPUT_SCALER_PATH)

# scale train set
X_train = pf.scale_features(X_train, config.OUTPUT_SCALER_PATH)

# train model and save
コード例 #26
0
# get first letter from cabin variable
pf.extract_cabin_letter(X_train, 'cabin')

# impute numerical variable
for var in config.NUMERICAL_TO_IMPUTE:
    pf.add_missing_indicator(X_train, var)
    pf.impute_na(X_train, var, config.IMPUTATION_DICT[var])

# impute categorical variables
for var in config.CATEGORICAL_VARS:
    pf.impute_na(X_train, var)

# Group rare labels
for var, labels in config.FREQUENT_LABELS.items():
    pf.remove_rare_labels(X_train, var, labels)

# encode categorical variables
for var in config.CATEGORICAL_VARS:
    X_train = pf.encode_categorical(X_train, var)

# check all dummies were added
pf.check_dummy_variables(X_train, config.DUMMY_VARIABLES)

X_train = X_train[config.ALL_VARS]

# train scaler and save
pf.train_scaler(X_train, config.OUTPUT_SCALER_PATH)

# scale train set
X_train = pf.scale_features(X_train, config.OUTPUT_SCALER_PATH)
コード例 #27
0
ファイル: train.py プロジェクト: josh-maki/deploy-ml

# impute numerical variable
# since the notebook just uses age and fare, we will ignore the "NUMERICAL TO IMPUTE"
for var in ['age', 'fare']:
    X_train = pf.impute_na(X_train, var, config.IMPUTATION_DICT)


# add missing indicator #Note that I added this to conform train.py with notebook.
for var in ['age', 'fare']:
    X_train = pf.add_missing_indicator(X_train, var)


# Group rare labels
for var in config.CATEGORICAL_VARS:
    X_train = pf.remove_rare_labels(X_train, config.FREQUENT_LABELS, var)


# encode categorical variables
for var in config.CATEGORICAL_VARS:
    X_train = pf.encode_categorical(X_train, var)


# check all dummies were added
X_train = pf.check_dummy_variables(X_train, config.DUMMY_VARIABLES)

# train scaler and save
pf.train_scaler(X_train, config.ORDERED_COLUMNS, config.OUTPUT_SCALER_PATH)


# scale train set