コード例 #1
0
def test3_misclass_rate_feature(dataset_categorical,
                                dataset_predictions_categorical):
    """Checks for assertions that should be true for specific parameter combinations."""

    result_edges, result_rate, result_sd = misclass_rate_feature(
        dataset_categorical,
        dataset_predictions_categorical,
        feature="Feature 1",
        categorical=True,
    )
    result_edges_scenario = ["blue", "green", "red"]
    result_rate_scenario = [0.6667, 0.0, 1.0]
    result_sd_scenario = [0.8563, float("nan"), 2.0]

    # All results should have the expected number of elements
    assert len(result_edges) == len(result_edges_scenario)
    assert len(result_rate) == len(result_rate_scenario)
    assert len(result_sd) == len(result_sd_scenario)

    # All the elements of the three results should agree with the written values
    # up to 0,1% (10^-3).
    np.testing.assert_array_equal(result_edges, result_edges_scenario)
    np.testing.assert_allclose(result_rate,
                               result_rate_scenario,
                               rtol=1e-03,
                               equal_nan=True)
    np.testing.assert_allclose(result_sd,
                               result_sd_scenario,
                               rtol=1e-03,
                               equal_nan=True)
コード例 #2
0
def test1_misclass_rate_feature(dataset, dataset_predictions, feature_param,
                                bins_param, bins_type_param):
    """Checks for assertions that should always apply regardless of the dataset
    and the parameters.
    """
    result_edges, result_rate, result_sd = misclass_rate_feature(
        dataset,
        dataset_predictions,
        feature=feature_param,
        bins=bins_param,
        bins_type=bins_type_param,
    )
    assert len(result_edges) == len(result_rate) + 1
    if type(bins_param) == int:
        assert len(result_rate) == bins_param
    elif type(bins_param) == list:
        assert len(result_rate) == len(bins_param) - 1
    assert max(result_rate) <= 1.0
    assert min(result_rate) >= 0.0
コード例 #3
0
def test2_misclass_rate_feature(
    dataset,
    dataset_predictions,
    feature_scenario,
    categorical_scenario,
    bins_scenario,
    bins_type_scenario,
    result_edges_scenario,
    result_rate_scenario,
    result_sd_scenario,
):
    """Checks for assertions that should be true for specific parameter combinations."""

    result_edges, result_rate, result_sd = misclass_rate_feature(
        dataset,
        dataset_predictions,
        feature_scenario,
        categorical=categorical_scenario,
        bins=bins_scenario,
        bins_type=bins_type_scenario,
    )

    # All results should have the expected number of elements
    assert len(result_edges) == len(result_edges_scenario)
    assert len(result_rate) == len(result_rate_scenario)
    assert len(result_sd) == len(result_sd_scenario)

    # All the elements of the three results should agree with the written values
    # up to 0,1% (10^-3).
    np.testing.assert_allclose(result_edges,
                               result_edges_scenario,
                               rtol=1e-03,
                               equal_nan=True)
    np.testing.assert_allclose(result_rate,
                               result_rate_scenario,
                               rtol=1e-03,
                               equal_nan=True)
    np.testing.assert_allclose(result_sd,
                               result_sd_scenario,
                               rtol=1e-03,
                               equal_nan=True)