def main(): fn = args.infile if args.inplace: fil = filterbank.FilterbankFile(fn, mode='readwrite') else: fil = filterbank.FilterbankFile(fn, mode='read') if args.inprof is not None: warnings.warn("Saved profiles already may be tuned to a particular " \ "DM, period and filterbank file (freq, nchans, " \ "tsamp, etc).") prof = load_profile(args.inprof) else: prof = make_profile(args.vonmises) prof = apply_dm(prof, args.period, args.dm, \ fil.foff, fil.frequencies, fil.tsamp) scale_profile(prof, args.scale_name, args.scale_cfgstrs, fil) if args.outprof is not None: save_profile(prof, args.outprof) outfn = args.outname % fil.header print("Showing plot of profile to be injected...") plt.figure() plt.clf() prof.plot(dedisp=True) plt.xlim(0,1) plt.savefig(outfn+".ps") if args.dryrun: sys.exit() inject(fil, outfn, prof, args.period, args.dm, \ nbitsout=args.output_nbits, block_size=args.block_size, \ pulsar_only=args.pulsar_only, inplace=args.inplace)
def main(): fn = args[0] if fn.endswith(".fil"): # Filterbank file filetype = "filterbank" rawdatafile = filterbank.FilterbankFile(fn) elif fn.endswith(".fits"): # PSRFITS file filetype = "psrfits" rawdatafile = psrfits.PsrfitsFile(fn) else: raise ValueError("Cannot recognize data file type from " "extension. (Only '.fits' and '.fil' " "are supported.)") data, bins, nbins, start = waterfall(rawdatafile, options.start, options.duration, dm=options.dm, nbins=options.nbins, nsub=options.nsub, subdm=options.subdm, zerodm=options.zerodm, downsamp=options.downsamp, scaleindep=options.scaleindep, width_bins=options.width_bins, mask=options.mask, maskfn=options.maskfile, bandpass_corr=options.bandpass_corr) plot_waterfall(data, start, options.duration, integrate_ts=options.integrate_ts, integrate_spec=options.integrate_spec, show_cb=options.show_cb, cmap_str=options.cmap, sweep_dms=options.sweep_dms, sweep_posns=options.sweep_posns)
def main(): fn = args[0] if fn.endswith(".fil"): # Filterbank file filetype = "filterbank" print_debug("Reading filterbank file..") rawdatafile = filterbank.FilterbankFile(fn) basename = fn[:-4] elif fn.endswith(".fits"): # PSRFITS file filetype = "psrfits" print_debug("Reading PSRFITS file..") rawdatafile = psrfits.PsrfitsFile(fn) basename = fn[:-5] else: raise ValueError("Cannot recognize data file type from " "extension. (Only '.fits' and '.fil' " "are supported.)") if options.outbasenm: basename = options.outbasenm spdcand = spcand.params() if not options.man_params: print_debug('Maximum number of candidates to plot: %i' % options.maxnumcands) make_spd_from_file(spdcand, rawdatafile, \ options.txtfile, options.maskfile, \ options.min_rank, options.group_rank, \ options.plot, options.just_waterfall, \ options.integrate_ts, options.integrate_spec, options.disp_pulse, \ options.loc_pulse, options.nsub, \ options.maxnumcands, \ basename, \ mask=options.mask, barytime=options.barytime, \ bandpass_corr=options.bandpass_corr) else: print_debug("Making spd files based on mannual parameters. I suggest" \ "reading in parameters from the groups.txt file.") make_spd_from_man_params(spdcand, rawdatafile, \ options.txtfile, options.maskfile, \ options.plot, options.just_waterfall, \ options.subdm, options.dm, options.sweep_dms, \ options.sigma, \ options.start, options.duration, \ options.width_bins, options.nbins, options.downsamp, \ options.nsub, \ options.scaleindep, \ options.spec_width, options.loc_pulse, \ options.integrate_ts, options.integrate_spec, options.disp_pulse, \ basename, \ options.mask, options.bandpass_corr, options.barytime, \ options.man_params)
def inject(infile, outfn, prof, period, dm, nbitsout=None, block_size=BLOCKSIZE, pulsar_only=False, inplace=False): if isinstance(infile, filterbank.FilterbankFile): fil = infile elif inplace: fil = filterbank.FilterbankFile(infile, 'readwrite') else: fil = filterbank.FilterbankFile(infile, 'read') print("Injecting pulsar signal into: %s" % fil.filename) if False: delays = psr_utils.delay_from_DM(dm, fil.frequencies) delays -= delays[np.argmax(fil.frequencies)] get_phases = lambda times: (times-delays)/period % 1 else: get_phases = lambda times: times/period % 1 # Create the output filterbank file if nbitsout is None: nbitsout = fil.nbits if inplace: warnings.warn("Injecting pulsar signal *in-place*") outfil = fil else: # Start an output file print("Creating out file: %s" % outfn) outfil = filterbank.create_filterbank_file(outfn, fil.header, \ nbits=nbitsout, mode='append') if outfil.nbits == 8: raise NotImplementedError("This code is out of date. 'delays' is not " \ "done in this way anymore..") # Read the first second of data to get the global scaling to use onesec = fil.get_timeslice(0, 1).copy() onesec_nspec = onesec.shape[0] times = np.atleast_2d(np.arange(onesec_nspec)*fil.tsamp).T+delays phases = times/period % 1 onesec += prof(phases) minimum = np.min(onesec) median = np.median(onesec) # Set median to 1/3 of dynamic range global_scale = (256.0/3.0) / median del onesec else: # No scaling to be performed # These values will cause scaling to keep data unchanged minimum = 0 global_scale = 1 sys.stdout.write(" %3.0f %%\r" % 0) sys.stdout.flush() oldprogress = -1 # Loop over data lobin = 0 spectra = fil.get_spectra(0, block_size) numread = spectra.shape[0] while numread: if pulsar_only: # Do not write out data from input file # zero it out spectra *= 0 hibin = lobin+numread # Sample at middle of time bin times = (np.arange(lobin, hibin, 1.0/NINTEG_PER_BIN)+0.5/NINTEG_PER_BIN)*fil.dt #times = (np.arange(lobin, hibin)+0.5)*fil.dt phases = get_phases(times) profvals = prof(phases) shape = list(profvals.shape) shape[1:1] = [NINTEG_PER_BIN] shape[0] /= NINTEG_PER_BIN profvals.shape = shape toinject = profvals.mean(axis=1) #toinject = profvals if np.ndim(toinject) > 1: injected = spectra+toinject else: injected = spectra+toinject[:,np.newaxis] scaled = (injected-minimum)*global_scale if inplace: outfil.write_spectra(scaled, lobin) else: outfil.append_spectra(scaled) # Print progress to screen progress = int(100.0*hibin/fil.nspec) if progress > oldprogress: sys.stdout.write(" %3.0f %%\r" % progress) sys.stdout.flush() oldprogress = progress # Prepare for next iteration lobin = hibin spectra = fil.get_spectra(lobin, block_size) numread = spectra.shape[0] sys.stdout.write("Done \n") sys.stdout.flush()
def main(): fn = args[0] if fn.endswith(".fil"): # Filterbank file filetype = "filterbank" rawdatafile = filterbank.FilterbankFile(fn) elif fn.endswith(".fits"): # PSRFITS file filetype = "psrfits" rawdatafile = psrfits.PsrfitsFile(fn) else: raise ValueError("Cannot recognize data file type from " "extension. (Only '.fits' and '.fil' " "are supported.)") data, bins, nbins, start, source_name = waterfall(rawdatafile, options.start, \ options.duration, dm=options.dm,\ nbins=options.nbins, nsub=options.nsub,\ subdm=options.subdm, zerodm=options.zerodm, \ downsamp=options.downsamp, \ scaleindep=options.scaleindep, \ width_bins=options.width_bins, mask=options.mask, \ maskfn=options.maskfile, \ csv_file=options.csv_file,\ bandpass_corr=options.bandpass_corr) ofile,ttest,ttestprob = plot_waterfall(data, start, source_name, options.duration, \ dm=options.dm,ofile=options.ofile, integrate_ts=options.integrate_ts, \ integrate_spec=options.integrate_spec, show_cb=options.show_cb, cmap_str=options.cmap, sweep_dms=options.sweep_dms, \ sweep_posns=options.sweep_posns, downsamp=options.downsamp,width=options.width,snr=options.snr,csv_file=options.csv_file,prob=options.prob) ttestprob = "%.2f" % ((1 - ttestprob) * 100) ttest = "%.2f" % (ttest) # Update CSV file if file is provided if csv_file: sourcename = rawdatafile.header['source_name'] src_ra = rawdatafile.header['src_raj'] src_dec = rawdatafile.header['src_dej'] tstart = rawdatafile.header['tstart'] fch1 = rawdatafile.header['fch1'] nchans = rawdatafile.header['nchans'] bw = int(rawdatafile.header['nchans']) * rawdatafile.header['foff'] cat = ofile.split("_")[0] snr = options.snr width = options.width dm = options.dm if options.prob: prob = options.prob else: prob = "*" df = pd.DataFrame({ 'PNGFILE': [ofile], 'Category': [cat], 'Prob': [prob], 'T-test': [ttest], 'T-test_prob': [ttestprob], 'SNR': [snr], 'WIDTH': [width], 'DM': [dm], 'SourceName': [sourcename], 'RA': [src_ra], 'DEC': [src_dec], 'MJD': [tstart], 'Hfreq': [fch1], 'NCHANS': [nchans], 'BANDWIDTH': [bw], 'filename': [fn] }) #Column order coming out irregular, so fixing it here col = [ 'PNGFILE', 'Category', 'Prob', 'T-test', 'T-test_prob', 'SNR', 'WIDTH', 'DM', 'SourceName', 'RA', 'DEC', 'MJD', 'Hfreq', 'NCHANS', 'BANDWIDTH', 'filename' ] df = df.reindex(columns=col) if os.path.exists(csv_file) is False: with open(csv_file, 'w') as f: df.to_csv(f, header=True, index=False) else: with open(csv_file, 'a') as f: df.to_csv(f, header=False, index=False)
def main(args): infn = args[0] print("Reading filterbank file (%s)" % infn) fil = filterbank.FilterbankFile(infn) if options.start_time is None: startbin = 0 else: startbin = int(np.round(options.start_time/fil.tsamp)) if options.end_time is None: endbin = fil.nspec else: endbin = int(np.round(options.end_time/fil.tsamp))+1 new_nspec = endbin-startbin if new_nspec <= 0: raise ValueError("Bad number of spectra to be written (%d). " \ "Check start/end times." % new_nspec) # Determine lo/hi channels to write to file # If high frequencies come first in spectra 'hichan' refers to # the lo-freq cutoff and 'lochan' refers to the hi-freq cutoff. if options.lo_freq is None: if fil.foff > 0: lochan = 0 else: hichan = fil.nchans else: ichan = int(np.round((options.lo_freq-fil.fch1)/fil.foff)) if fil.foff > 0: lochan = ichan else: hichan = ichan+1 if options.hi_freq is None: if fil.foff > 0: hichan = fil.nchans else: lochan = 0 else: ichan = int(np.round((options.hi_freq-fil.fch1)/fil.foff)) if fil.foff > 0: hichan = ichan+1 else: lochan = ichan new_nchans = hichan-lochan if new_nchans <= 0: raise ValueError("Bad number of channels to be written (%d). " \ "Check lo/hi frequencies." % new_nchans) print("Will extract") print(" %d bins (%d to %d incl.)" % (new_nspec, startbin, endbin-1)) print(" (Original num bins: %d)" % fil.nspec) print(" %d channels (%d to %d incl.)" % (new_nchans, lochan, hichan-1)) print(" (Original num chans: %d)" % fil.nchans) # Create output file outfn = options.outname % fil.header print("Creating out file: %s" % outfn) outhdr = copy.deepcopy(fil.header) outhdr['nchans'] = new_nchans outhdr['fch1'] = fil.frequencies[lochan] filterbank.create_filterbank_file(outfn, outhdr, nbits=fil.nbits) outfil = filterbank.FilterbankFile(outfn, mode='write') # Write data sys.stdout.write(" %3.0f %%\r" % 0) sys.stdout.flush() nblocks = int(new_nspec/options.block_size) remainder = new_nspec % options.block_size oldprogress = -1 for iblock in np.arange(nblocks): lobin = iblock*options.block_size + startbin hibin = lobin+options.block_size spectra = fil.get_spectra(lobin, hibin) spectra = spectra[:,lochan:hichan] # restrict channels outfil.append_spectra(spectra) progress = int(100.0*((hibin-startbin)/new_nspec)) if progress > oldprogress: sys.stdout.write(" %3.0f %%\r" % progress) sys.stdout.flush() oldprogress = progress # Read all remaining spectra if remainder: spectra = fil.get_spectra(endbin-remainder, endbin) spectra = spectra[:,lochan:hichan] # restrict channels outfil.append_spectra(spectra) sys.stdout.write("Done \n") sys.stdout.flush()