def senet154(num_classes=1000, pretrained='imagenet', first_stride=1): model = SENet(senet.SEBottleneck, [3, 8, 36, 3], groups=64, reduction=16, first_stride=first_stride, dropout_p=0.2, num_classes=num_classes) if pretrained is not None: settings = senet.pretrained_settings['senet154'][pretrained] senet.initialize_pretrained_model(model, num_classes, settings) return model
def se_resnet101(num_classes=1000, pretrained='imagenet', first_stride=1): model = SENet(senet.SEBottleneck, [3, 4, 23, 3], groups=1, reduction=16, first_stride=first_stride, dropout_p=None, inplanes=64, input_3x3=False, downsample_kernel_size=1, downsample_padding=0, num_classes=num_classes) if pretrained is not None: settings = senet.pretrained_settings['se_resnet101'][pretrained] senet.initialize_pretrained_model(model, num_classes, settings) return model