コード例 #1
0
ファイル: main.py プロジェクト: murielhol/Time-Serie-Thesis
def main(config):

    
    if config.validate:
        output_len = config.output_seq_length
        l = config.num_layers
        loss = config.loss
        sl = config.num_stochastic_layers
        config = pickle.load( open( 'saved_models/'+config.model_name+'/config.p', "rb" ))
        config.validate = True
        config.simulate = False
        config.output_seq_length = output_len
        config.num_layers = l
        config.num_stochastic_layers = sl
        config.loss = loss
        print(config)

    t1 = time.time()
    data_folder =  os.path.abspath(os.path.abspath("../../../../"))+'/data/'
    dataset = load_data(data_folder, config)

    t2 = time.time()
    print('Finished loading the dataset: ' + str(t2-t1) +' sec \n')

    model = PricePredictor(config, dataset)
    if config.validate:
        # model._make_figs(steps = config.output_seq_length, epoch=200)
        # model._validate(steps = config.output_seq_length, epoch=160)
        model._backtest(epoch=160)
    else:
        model._train()
コード例 #2
0
def main(config):

    if config.validate:
        output_len = config.output_seq_length
        file_path = config.file_path
        seed = config.seed
        loss = config.loss
        target = config.target
        config = pickle.load(
            open('saved_models/' + config.model_name + '/config.p', "rb"))
        config.validate = True
        config.file_path = file_path
        config.output_seq_length = output_len
        config.seed = seed
        config.loss = loss
        config.backtest_target = 'close'
        config.target = 'NDX'
        print(config)

    t1 = time.time()
    data_folder = os.path.abspath(os.path.abspath("../../../../")) + '/data/'
    dataset = load_data(data_folder, config)

    t2 = time.time()
    print('Finished loading the dataset: ' + str(t2 - t1) + ' sec \n')

    model = PricePredictor(config, dataset)

    if config.validate:
        model._backtest(epoch=150)
        # model._validate(steps = config.output_seq_length, epoch=150)
    else:
        model._train()
コード例 #3
0
ファイル: main.py プロジェクト: murielhol/Time-Serie-Thesis
def main(config):

    if config.validate:
        output_len = config.output_seq_length
        config = pickle.load(
            open('saved_models/' + config.model_name + '/config.p', "rb"))
        config.validate = True
        config.output_seq_length = output_len
        config.num_layers = 6
        print(config)

    elif config.backtest:
        config = pickle.load(
            open('saved_models/' + config.model_name + '/config.p', "rb"))
        config.backtest = True
        print(config)

    t1 = time.time()
    data_folder = os.path.abspath(os.path.abspath("../../../../")) + '/data/'
    dataset = load_data(data_folder, config)

    t2 = time.time()
    print('Finished loading the dataset: ' + str(t2 - t1) + ' sec \n')
    model = PricePredictor(config, dataset)

    if config.validate:
        model._validate(steps=config.output_seq_length, epoch=40)
        # model._make_figs(steps = config.output_seq_length, epoch=40)
    if config.backtest:
        model._backtest2(epoch=180)
    else:
        model._train()
コード例 #4
0
ファイル: main.py プロジェクト: murielhol/Time-Serie-Thesis
def main(config):

    if config.validate:
        config = pickle.load(
            open('saved_models/' + config.model_name + '/config.p', "rb"))
        config.validate = True
        config.simulate = False
        print(config)

    t1 = time.time()
    data_folder = os.path.abspath(os.path.abspath("../../../")) + '/data/'
    dataset = load_data(data_folder, config)

    t2 = time.time()
    print('Finished loading the dataset: ' + str(t2 - t1) + ' sec \n')

    model = PricePredictor(config, dataset)
    if config.validate:
        # model._validate( epoch=70)
        # model._make_figs(epoch=70)
        model._make_figs2(epoch=70)

    elif config.tsne:
        model._tsne(epoch=70)
    else:
        model._train()
コード例 #5
0
def main(config):

    if config.validate:
        output_len = config.output_seq_length
        file_path = config.file_path
        seed = config.seed
        loss = config.loss
        l = config.num_layers
        sl = config.num_stochastic_layers
        config = pickle.load(
            open('saved_models/' + config.model_name + '/config.p', "rb"))
        config.validate = True
        config.file_path = file_path
        config.output_seq_length = output_len
        config.seed = seed
        config.loss = loss
        config.num_layers = l
        config.num_stochastic_layers = sl
        config.backtest_target = 'close_btc'
        config.target = 'lr_btc'
        config.model_name = 'vaegan_mv_hour_'
        print(config)

    elif config.backtest:
        config = pickle.load(
            open('saved_models/' + config.model_name + '/config.p', "rb"))
        config.backtest = True
        config.validate = False
        print(config)

    t1 = time.time()
    data_folder = os.path.abspath(os.path.abspath("../../../../")) + '/data/'
    dataset = load_data(data_folder, config)

    t2 = time.time()
    print('Finished loading the dataset: ' + str(t2 - t1) + ' sec \n')
    model = PricePredictor(config, dataset)

    if config.validate:
        model._validate(steps=config.output_seq_length, epoch=500)
        # model._make_figs(steps = config.output_seq_length, epoch=200)
        # model._backtest(epoch=500)

    else:
        model._train()