コード例 #1
0
 def test_pyoptimizer_parameter(self):
     dev = D.Naive()
     Device.set_default(dev)
     pw1 = Parameter([8, 2], I.XavierUniform())
     self.t.add(pw1)
     self.assertIn("testadam-m1", pw1.stats)
     self.assertIn("testadam-m2", pw1.stats)
コード例 #2
0
 def setUp(self):
     self.device = Naive()
     self.graph = Graph()
     Device.set_default(self.device)
     Graph.set_default(self.graph)
     self.a = np.array([[1, 2], [3, 4]], np.float32)
     self.b = np.array([[1, 1], [4, 8]], np.float32)
コード例 #3
0
ファイル: main.py プロジェクト: refiute/primitiv_practice
def main():
    args = get_arguments()

    print("initializing device ... ", end="", file=sys.stderr, flush=True)
    dev = D.Naive() if args.gpu < 0 else D.CUDA(args.gpu)
    Device.set_default(dev)
    print("done.", file=sys.stderr)

    mode = args.mode
    prefix = args.model
    if mode == "train":
        encdec = EncoderDecoder(args.dropout)
        encdec.init(args.src_vocab, args.trg_vocab, args.embed, args.hidden)
        optimizer = O.Adam()
        optimizer.set_weight_decay(1e-6)
        optimizer.set_gradient_clipping(5)
        train(encdec, optimizer, args, 1e10)
    elif mode == "resume":
        print("loading model/optimizer ... ",
              end="",
              file=sys.stderr,
              flush=True)
        encdec = EncoderDecoder(args.dropout)
        encdec.load(prefix + ".model")
        optimizer = O.Adam()
        optimizer.load(prefix + ".optimizer")
        valid_ppl = load_ppl(prefix + ".valid_ppl")
        print("done.", file=sys.stderr)
        train(encdec, optimizer, args, valid_ppl)
    else:
        print("loading model ... ", end="", file=sys.stderr, flush=True)
        encdec = EncoderDecoder(args.dropout)
        encdec.load(prefix + ".model")
        print("done.", file=sys.stderr)
        test(encdec, args)
コード例 #4
0
 def test_pyoptimizer_not_implemented(self):
     dev = D.Naive()
     Device.set_default(dev)
     optimizer = IncompleteOptimizer()
     p = Parameter()
     with self.assertRaises(NotImplementedError):
         optimizer.add(p)
     with self.assertRaises(NotImplementedError):
         optimizer.update()
     with self.assertRaises(NotImplementedError):
         Optimizer.get_configs(optimizer)
     with self.assertRaises(NotImplementedError):
         Optimizer.set_configs(optimizer, {'Optimizer.epoch': 1}, {
             'Optimizer.clip_threshold': 0.0,
             'Optimizer.lr_scale': 1.0,
             'Optimizer.l2_strength': 0.0
         })
コード例 #5
0
ファイル: python_trainer.py プロジェクト: vbkaisetsu/primitiv
 def test_pytrainer_not_implemented(self):
     dev = D.Naive()
     Device.set_default(dev)
     trainer = IncompleteTrainer()
     p = Parameter(Shape([]))
     with self.assertRaises(NotImplementedError):
         trainer.add_parameter(p)
     with self.assertRaises(NotImplementedError):
         trainer.update()
     with self.assertRaises(NotImplementedError):
         Trainer.get_configs(trainer)
     with self.assertRaises(NotImplementedError):
         Trainer.set_configs(trainer, {'Trainer.epoch': 1}, {
             'Trainer.clip_threshold': 0.0,
             'Trainer.lr_scale': 1.0,
             'Trainer.l2_strength': 0.0
         })
コード例 #6
0
ファイル: encdec.py プロジェクト: vbkaisetsu/primitiv
def main():
    parser = ArgumentParser()
    parser.add_argument("mode")
    parser.add_argument("model_prefix")
    args = parser.parse_args()

    mode = args.mode
    prefix = args.model_prefix
    print("mode:", mode, file=sys.stderr)
    print("prefix:", prefix, file=sys.stderr)

    if mode not in ("train", "resume", "test"):
        print("unknown mode:", mode, file=sys.stderr)
        return

    print("initializing device ... ", end="", file=sys.stderr)
    sys.stderr.flush()

    dev = D.Naive()  # = D.CUDA(0)
    Device.set_default(dev)

    print("done.", file=sys.stderr)

    if mode == "train":
        encdec = EncoderDecoder("encdec", SRC_VOCAB_SIZE, TRG_VOCAB_SIZE,
                                NUM_EMBED_UNITS, NUM_HIDDEN_UNITS,
                                DROPOUT_RATE)
        trainer = T.Adam()
        trainer.set_weight_decay(1e-6)
        trainer.set_gradient_clipping(5)
        train(encdec, trainer, prefix, 1e10)
    elif mode == "resume":
        print("loading model/trainer ... ", end="", file=sys.stderr)
        sys.stderr.flush()
        encdec = EncoderDecoder.load("encdec", prefix + '.')
        trainer = T.Adam()
        trainer.load(prefix + ".trainer.config")
        valid_ppl = load_ppl(prefix + ".valid_ppl.config")
        print("done.", file=sys.stderr)
        train(encdec, trainer, prefix, valid_ppl)
    else:  # mode == "test"
        print("loading model ... ", end="", file=sys.stderr)
        sys.stderr.flush()
        encdec = EncoderDecoder.load("encdec", prefix + '.')
        print("done.", file=sys.stderr)
        test(encdec)
コード例 #7
0
def main():
    parser = ArgumentParser()
    parser.add_argument("mode", help="(train|resume|test)")
    parser.add_argument("model_prefix", help="prefix of the model files.")
    args = parser.parse_args()

    mode = args.mode
    prefix = args.model_prefix
    print("mode:", mode, file=sys.stderr)
    print("prefix:", prefix, file=sys.stderr)

    if mode not in ("train", "resume", "test"):
        print("unknown mode:", mode, file=sys.stderr)
        return

    print("initializing device ... ", end="", file=sys.stderr)
    sys.stderr.flush()
    dev = D.CUDA(0)
    Device.set_default(dev)
    print("done.", file=sys.stderr)

    if mode == "train":
        encdec = AttentionalEncoderDecoder()
        encdec.init(SRC_VOCAB_SIZE, TRG_VOCAB_SIZE, NUM_EMBED_UNITS,
                    NUM_HIDDEN_UNITS)
        optimizer = O.Adam()
        optimizer.set_weight_decay(1e-6)
        optimizer.set_gradient_clipping(5)
        train(encdec, optimizer, prefix, 1e10)
    elif mode == "resume":
        print("loading model/optimizer ... ", end="", file=sys.stderr)
        sys.stderr.flush()
        encdec = AttentionalEncoderDecoder()
        encdec.load(prefix + ".model")
        optimizer = O.Adam()
        optimizer.load(prefix + ".optimizer")
        valid_ppl = load_ppl(prefix + ".valid_ppl")
        print("done.", file=sys.stderr)
        train(encdec, optimizer, prefix, valid_ppl)
    else:
        print("loading model ... ", end="", file=sys.stderr)
        sys.stderr.flush()
        encdec = AttentionalEncoderDecoder()
        encdec.load(prefix + ".model")
        print("done.", file=sys.stderr)
        test(encdec)
コード例 #8
0
 def setUp(self):
     self.device = Naive()
     self.graph = Graph()
     Device.set_default(self.device)
     Graph.set_default(self.graph)
     self.ndarray_data = [
         np.array([
             [1, 2, 3],
             [4, 5, 6],
             [7, 8, 9],
             [10, 11, 12],
         ], np.float32),
         np.array([
             [13, 14, 15],
             [16, 17, 18],
             [19, 20, 21],
             [22, 23, 24],
         ], np.float32),
     ]
     self.list_data = [
         1.0,
         4.0,
         7.0,
         10.0,
         2.0,
         5.0,
         8.0,
         11.0,
         3.0,
         6.0,
         9.0,
         12.0,
         13.0,
         16.0,
         19.0,
         22.0,
         14.0,
         17.0,
         20.0,
         23.0,
         15.0,
         18.0,
         21.0,
         24.0,
     ]
コード例 #9
0
ファイル: python_trainer.py プロジェクト: vbkaisetsu/primitiv
def train_func(trainer):
    dev = D.Naive(12345)
    Device.set_default(dev)
    g = Graph()
    Graph.set_default(g)

    pw1 = Parameter([8, 2], I.XavierUniform())
    pb1 = Parameter([8], I.Constant(0))
    pw2 = Parameter([1, 8], I.XavierUniform())
    pb2 = Parameter([1], I.Constant(0))

    trainer.add_parameter(pw1)
    trainer.add_parameter(pb1)
    trainer.add_parameter(pw2)
    trainer.add_parameter(pb2)

    input_data = [1, 1, 1, -1, -1, 1, -1, -1]
    output_data = [1, -1, -1, 1]

    for i in range(10):
        g.clear()
        x = F.input(input_data, Shape([2], 4))
        w1 = F.parameter(pw1)
        b1 = F.parameter(pb1)
        w2 = F.parameter(pw2)
        b2 = F.parameter(pb2)
        h = F.tanh(w1 @ x + b1)
        y = w2 @ h + b2

        t = F.input(output_data, Shape([], 4))
        diff = t - y
        loss = F.batch.mean(diff * diff)

        trainer.reset_gradients()
        loss.backward()
        trainer.update()

    return [
        pw1.value.to_list(),
        pb1.value.to_list(),
        pw2.value.to_list(),
        pb2.value.to_list()
    ]
コード例 #10
0
 def setUp(self):
     self.device = Naive()
     self.graph = Graph()
     Device.set_default(self.device)
     Graph.set_default(self.graph)
     self.input_data = [
         np.array([
             [ 1, 2, 3],
             [ 4, 5, 6],
             [ 7, 8, 9],
         ], np.float32),
         np.array([
             [11,12,13],
             [14,15,16],
             [17,18,19],
         ], np.float32),
     ]
     self.list_expected = [
          1.0,  4.0,  7.0,  2.0,  5.0,  8.0,  3.0,  6.0,  9.0,
         11.0, 14.0, 17.0, 12.0, 15.0, 18.0, 13.0, 16.0, 19.0,
     ]
コード例 #11
0
 def test_pyoptimizer_propagate_exception(self):
     dev = D.Naive()
     Device.set_default(dev)
     optimizer = ExceptionOptimizer()
     p = Parameter()
     with self.assertRaises(TestException) as ctx:
         optimizer.add(p)
     self.assertEqual(str(ctx.exception), "configure_parameter")
     with self.assertRaises(TestException) as ctx:
         optimizer.update()
     self.assertEqual(str(ctx.exception), "update_parameter")
     with self.assertRaises(TestException) as ctx:
         Optimizer.get_configs(optimizer)
     self.assertEqual(str(ctx.exception), "get_configs")
     with self.assertRaises(TestException) as ctx:
         Optimizer.set_configs(optimizer, {'Optimizer.epoch': 1}, {
             'Optimizer.clip_threshold': 0.0,
             'Optimizer.lr_scale': 1.0,
             'Optimizer.l2_strength': 0.0
         })
     self.assertEqual(str(ctx.exception), "set_configs")
コード例 #12
0
def main(config):
    mode = config['mode']
    if mode == 'preproc':
        preproc(config)
        return

    print('initializing device ...', end='', file=sys.stderr, flush=True)
    dev = D.Naive() if config['gpu'] < 0 else D.CUDA(config['gpu'])
    Device.set_default(dev)
    print("done.", file=sys.stderr, flush=True)

    prefix = config['model_prefix']
    if mode == 'train':
        model = Transformer(config['n_heads'], config['n_stacks'],
                            config['dropout'], config['generation_limit'])
        model.init(config['vocabulary_size'], config['d_model'],
                   config['d_ff'])
        optimizer = O.Adam(alpha=1, beta2=0.98, eps=1e-9)
        optimizer.set_gradient_clipping(5)
        train(model, optimizer, config, 1e10)
    elif mode == 'resume':
        print('loading model/optimizer ... ',
              end='',
              file=sys.stderr,
              flush=True)
        model = Transformer(config['n_heads'], config['n_stacks'],
                            config['dropout'], config['generation_limit'])
        model.load(prefix + '.model')
        optimizer = O.Adam(alpha=1, beta2=0.98, eps=1e-9)
        optimizer.set_gradient_clipping(5)
        optimizer.load(prefix + '.optimizer')
        with Path(prefix).with_suffix('.valid').open() as f:
            valid_ppl = float(f.read().strip())
        print('done.', file=sys.stderr, flush=True)
        train(model, optimizer, config, valid_ppl)
    elif mode == 'test':
        model = Transformer(config['n_heads'], config['n_stacks'],
                            config['dropout'], config['generation_limit'])
        model.load(prefix + '.model')
        test(model, config)
コード例 #13
0
def main():
    # Loads data
    train_inputs = load_images("data/train-images-idx3-ubyte",
                               NUM_TRAIN_SAMPLES)
    train_labels = load_labels("data/train-labels-idx1-ubyte",
                               NUM_TRAIN_SAMPLES)
    test_inputs = load_images("data/t10k-images-idx3-ubyte", NUM_TEST_SAMPLES)
    test_labels = load_labels("data/t10k-labels-idx1-ubyte", NUM_TEST_SAMPLES)

    dev = D.CUDA(0)
    Device.set_default(dev)
    g = Graph()
    Graph.set_default(g)

    # Parameters of CNNs
    # Shape: {kernel_height, kernel_width, in_channels, out_channels}
    pw_cnn1 = Parameter(Shape([KERNEL_SIZE1, KERNEL_SIZE1, 1, NUM_CHANNELS1]),
                        I.XavierUniformConv2D())
    pw_cnn2 = Parameter(
        Shape([KERNEL_SIZE2, KERNEL_SIZE2, NUM_CHANNELS1, NUM_CHANNELS2]),
        I.XavierUniformConv2D())

    # Parameters of FC layers
    pw_fc1 = Parameter(Shape([NUM_HIDDEN_UNITS, NUM_INPUT_UNITS]),
                       I.XavierUniform())
    pw_fc2 = Parameter(Shape([NUM_OUTPUT_UNITS, NUM_HIDDEN_UNITS]),
                       I.XavierUniform())
    pb_fc1 = Parameter(Shape([NUM_HIDDEN_UNITS]), I.Constant(0))
    pb_fc2 = Parameter(Shape([NUM_OUTPUT_UNITS]), I.Constant(0))

    # Optimizer
    optimizer = O.SGD(.1)
    optimizer.add(pw_cnn1, pw_cnn2, pw_fc1, pw_fc2, pb_fc1, pb_fc2)

    # Helper lambda to construct the predictor network.
    def make_graph(inputs, train):
        # Input and parameters.
        #x = F.input(Shape([IMAGE_HEIGHT, IMAGE_WIDTH], BATCH_SIZE), inputs)
        x = F.input(inputs)
        w_cnn1 = F.parameter(pw_cnn1)
        w_cnn2 = F.parameter(pw_cnn2)
        w_fc1 = F.parameter(pw_fc1)
        w_fc2 = F.parameter(pw_fc2)
        b_fc1 = F.parameter(pb_fc1)
        b_fc2 = F.parameter(pb_fc2)
        # CNNs
        h_cnn1 = F.relu(F.conv2d(x, w_cnn1, PADDING1, PADDING1, 1, 1, 1, 1))
        h_pool1 = F.max_pool2d(h_cnn1, 2, 2, 0, 0, 2, 2)
        h_cnn2 = F.relu(
            F.conv2d(h_pool1, w_cnn2, PADDING2, PADDING2, 1, 1, 1, 1))
        h_pool2 = F.max_pool2d(h_cnn2, 2, 2, 0, 0, 2, 2)
        # FC layers
        x_fc = F.dropout(F.flatten(h_pool2), .5, train)
        h_fc = F.dropout(F.relu(F.matmul(w_fc1, x_fc) + b_fc1), .5, train)
        return F.matmul(w_fc2, h_fc) + b_fc2

    # Batch randomizer
    ids = list(range(NUM_TRAIN_SAMPLES))

    for epoch in range(MAX_EPOCH):
        # Shuffles sample IDs.
        random.shuffle(ids)

        # Training loop
        for batch in range(NUM_TRAIN_BATCHES):
            print("\rTraining... %d / %d" % (batch + 1, NUM_TRAIN_BATCHES),
                  end="")
            # Makes a minibatch for training.
            inputs = [
                train_inputs[ids[batch * BATCH_SIZE + i]]
                for i in range(BATCH_SIZE)
            ]
            labels = [
                train_labels[ids[batch * BATCH_SIZE + i]]
                for i in range(BATCH_SIZE)
            ]

            # Constructs the graph.
            g.clear()
            y = make_graph(inputs, True)
            loss = F.softmax_cross_entropy(y, labels, 0)
            avg_loss = F.batch.mean(loss)

            # Dump computation graph at the first time.
            # if epoch == 0 and batch == 0:
            #     print(g.dump("dot"))

            # Implicit forward, backward, and updates parameters.
            optimizer.reset_gradients()
            avg_loss.backward()
            optimizer.update()

        print()

        match = 0

        # Test loop
        for batch in range(NUM_TEST_BATCHES):
            print("\rTesting... %d / %d" % (batch + 1, NUM_TEST_BATCHES),
                  end="")
            # Makes a test minibatch.
            inputs = [
                test_inputs[batch * BATCH_SIZE + i] for i in range(BATCH_SIZE)
            ]

            # Constructs the graph.
            g.clear()
            y = make_graph(inputs, False)

            # Gets outputs, argmax, and compares them with the label.
            y_val = y.to_list()
            for i in range(BATCH_SIZE):
                maxval = -1e10
                argmax = -1
                for j in range(NUM_OUTPUT_UNITS):
                    v = y_val[j + i * NUM_OUTPUT_UNITS]
                    if v > maxval:
                        maxval = v
                        argmax = j

                if argmax == test_labels[i + batch * BATCH_SIZE]:
                    match += 1

        accuracy = 100.0 * match / NUM_TEST_SAMPLES
        print("epoch %d: accuracy: %.2f%%" % (epoch, accuracy))

    return 0
コード例 #14
0
ファイル: xor.py プロジェクト: vbkaisetsu/primitiv-python
def main():
    dev = D.Naive()  # or D.CUDA(gpuid)
    Device.set_default(dev)

    # Parameters
    pw1 = Parameter([8, 2], I.XavierUniform())
    pb1 = Parameter([8], I.Constant(0))
    pw2 = Parameter([1, 8], I.XavierUniform())
    pb2 = Parameter([], I.Constant(0))

    # Optimizer
    optimizer = O.SGD(0.1)

    # Registers parameters.
    optimizer.add_parameter(pw1)
    optimizer.add_parameter(pb1)
    optimizer.add_parameter(pw2)
    optimizer.add_parameter(pb2)

    # Training data
    input_data = [
        np.array([1, 1], dtype=np.float32),  # Sample 1
        np.array([1, -1], dtype=np.float32),  # Sample 2
        np.array([-1, 1], dtype=np.float32),  # Sample 3
        np.array([-1, -1], dtype=np.float32),  # Sample 4
    ]
    output_data = [
        np.array([1], dtype=np.float32),  # Label 1
        np.array([-1], dtype=np.float32),  # Label 2
        np.array([-1], dtype=np.float32),  # Label 3
        np.array([1], dtype=np.float32),  # Label 4
    ]

    g = Graph()
    Graph.set_default(g)

    for i in range(10):
        g.clear()

        # Builds a computation graph.
        x = F.input(input_data)
        w1 = F.parameter(pw1)
        b1 = F.parameter(pb1)
        w2 = F.parameter(pw2)
        b2 = F.parameter(pb2)
        h = F.tanh(w1 @ x + b1)
        y = w2 @ h + b2

        # Obtains values.
        y_val = y.to_list()
        print("epoch ", i, ":")
        for j in range(4):
            print("  [", j, "]: ", y_val[j])

        # Extends the computation graph to calculate loss values.
        t = F.input(output_data)
        diff = t - y
        loss = F.batch.mean(diff * diff)

        # Obtains the loss.
        loss_val = loss.to_float()
        print("  loss: ", loss_val)

        # Updates parameters.
        optimizer.reset_gradients()
        loss.backward()
        optimizer.update()
コード例 #15
0
def main():
    # Loads data
    train_inputs = load_images("data/train-images-idx3-ubyte", NUM_TRAIN_SAMPLES)
    train_labels = load_labels("data/train-labels-idx1-ubyte", NUM_TRAIN_SAMPLES)
    test_inputs = load_images("data/t10k-images-idx3-ubyte", NUM_TEST_SAMPLES)
    test_labels = load_labels("data/t10k-labels-idx1-ubyte", NUM_TEST_SAMPLES)

    dev = D.Naive()  # or D.CUDA(gpuid)
    Device.set_default(dev)

    pw1 = Parameter([NUM_HIDDEN_UNITS, NUM_INPUT_UNITS], I.XavierUniform())
    pb1 = Parameter([NUM_HIDDEN_UNITS], I.Constant(0))
    pw2 = Parameter([NUM_OUTPUT_UNITS, NUM_HIDDEN_UNITS], I.XavierUniform())
    pb2 = Parameter([NUM_OUTPUT_UNITS], I.Constant(0))

    optimizer = O.SGD(.5)
    optimizer.add(pw1, pb1, pw2, pb2)

    def make_graph(inputs, train):
        x = F.input(inputs)

        w1 = F.parameter(pw1)
        b1 = F.parameter(pb1)
        h = F.relu(w1 @ x + b1)

        h = F.dropout(h, .5, train)

        w2 = F.parameter(pw2)
        b2 = F.parameter(pb2)
        return w2 @ h + b2

    ids = list(range(NUM_TRAIN_SAMPLES))

    g = Graph()
    Graph.set_default(g)

    for epoch in range(MAX_EPOCH):
        random.shuffle(ids)

        # Training loop
        for batch in range(NUM_TRAIN_BATCHES):
            print("\rTraining... %d / %d" % (batch + 1, NUM_TRAIN_BATCHES), end="")
            inputs = [train_inputs[ids[batch * BATCH_SIZE + i]] for i in range(BATCH_SIZE)]
            labels = [train_labels[ids[batch * BATCH_SIZE + i]] for i in range(BATCH_SIZE)]

            g.clear()

            y = make_graph(inputs, True)
            loss = F.softmax_cross_entropy(y, labels, 0)
            avg_loss = F.batch.mean(loss)

            optimizer.reset_gradients()
            avg_loss.backward()
            optimizer.update()

        print()

        match = 0

        # Test loop
        for batch in range(NUM_TEST_BATCHES):
            print("\rTesting... %d / %d" % (batch + 1, NUM_TEST_BATCHES), end="")
            inputs = [test_inputs[batch * BATCH_SIZE + i] for i in range(BATCH_SIZE)]

            g.clear()

            y = make_graph(inputs, False)
            y_val = y.to_list()
            for i in range(BATCH_SIZE):
                maxval = -1e10
                argmax = -1
                for j in range(NUM_OUTPUT_UNITS):
                    v = y_val[j + i * NUM_OUTPUT_UNITS]
                    if (v > maxval):
                        maxval = v
                        argmax = j
                if argmax == test_labels[i + batch * BATCH_SIZE]:
                    match += 1

        accuracy = 100.0 * match / NUM_TEST_SAMPLES
        print("\nepoch %d: accuracy: %.2f%%\n" % (epoch, accuracy))
コード例 #16
0
ファイル: parameter.py プロジェクト: vbkaisetsu/primitiv
 def setUp(self):
     self.dev = D.Naive()
     Device.set_default(self.dev)
     self.p = Parameter(init=np.array([1, 2, 3, 4, 5, 6, 7, 8]))
コード例 #17
0
def main():
    # Loads vocab.
    vocab = make_vocab("data/ptb.train.txt")
    print("#vocab:", len(vocab))  # maybe 10000
    eos_id = vocab["<s>"]

    # Loads all corpus.
    train_corpus = load_corpus("data/ptb.train.txt", vocab)
    valid_corpus = load_corpus("data/ptb.valid.txt", vocab)
    num_train_sents = len(train_corpus)
    num_valid_sents = len(valid_corpus)
    num_train_labels = count_labels(train_corpus)
    num_valid_labels = count_labels(valid_corpus)
    print("train:", num_train_sents, "sentences,", num_train_labels, "labels")
    print("valid:", num_valid_sents, "sentences,", num_valid_labels, "labels")

    dev = D.CUDA(0)
    Device.set_default(dev)

    # Trainer.
    trainer = T.Adam()
    trainer.set_weight_decay(1e-6)
    trainer.set_gradient_clipping(5)

    # Our LM.
    lm = RNNLM(len(vocab), eos_id, trainer)

    # Sentence IDs.
    train_ids = list(range(num_train_sents))
    valid_ids = list(range(num_valid_sents))

    g = Graph()
    Graph.set_default(g)

    # Train/valid loop.
    for epoch in range(MAX_EPOCH):
        print("epoch", (epoch + 1), "/", MAX_EPOCH, ":")
        # Shuffles train sentence IDs.
        random.shuffle(train_ids)

        # Training.
        train_loss = 0
        for ofs in range(0, num_train_sents, BATCH_SIZE):
            batch_ids = train_ids[ofs:min(ofs + BATCH_SIZE, num_train_sents)]
            batch = make_batch(train_corpus, batch_ids, eos_id)

            g.clear()

            outputs = lm.forward(batch)
            loss = lm.forward_loss(outputs, batch)
            train_loss += loss.to_float() * len(batch_ids)

            trainer.reset_gradients()
            loss.backward()
            trainer.update()

            print("\r%d" % ofs, end="")
            sys.stdout.flush()

        print()

        train_ppl = math.exp(train_loss / num_train_labels)
        print("  train ppl =", train_ppl)

        # Validation.
        valid_loss = 0
        for ofs in range(0, num_valid_sents, BATCH_SIZE):
            batch_ids = valid_ids[ofs:min(ofs + BATCH_SIZE, num_valid_sents)]
            batch = make_batch(valid_corpus, batch_ids, eos_id)

            g.clear()

            outputs = lm.forward(batch)
            loss = lm.forward_loss(outputs, batch)
            valid_loss += loss.to_float() * len(batch_ids)
            print("\r%d" % ofs, end="")
            sys.stdout.flush()

        print()

        valid_ppl = math.exp(valid_loss / num_valid_labels)
        print("  valid ppl =", valid_ppl)
コード例 #18
0
def main():
    # Loads vocab.
    vocab = make_vocab("data/ptb.train.txt")
    print("#vocab:", len(vocab))  # maybe 10000
    eos_id = vocab["<s>"]

    # Loads all corpus.
    train_corpus = load_corpus("data/ptb.train.txt", vocab)
    valid_corpus = load_corpus("data/ptb.valid.txt", vocab)
    num_train_sents = len(train_corpus)
    num_valid_sents = len(valid_corpus)
    num_train_labels = count_labels(train_corpus)
    num_valid_labels = count_labels(valid_corpus)
    print("train:", num_train_sents, "sentences,", num_train_labels, "labels")
    print("valid:", num_valid_sents, "sentences,", num_valid_labels, "labels")

    # Device and computation graph.
    dev = D.CUDA(0)
    Device.set_default(dev)
    g = Graph()
    Graph.set_default(g)

    # Our LM.
    lm = RNNLM(len(vocab), eos_id)

    # Optimizer.
    optimizer = O.SGD(1)
    #optimizer.set_weight_decay(1e-6)
    optimizer.set_gradient_clipping(5)
    optimizer.add(lm)

    # Sentence IDs.
    train_ids = list(range(num_train_sents))
    valid_ids = list(range(num_valid_sents))

    best_valid_ppl = 1e10

    # Train/valid loop.
    for epoch in range(MAX_EPOCH):
        print("epoch", epoch + 1, "/", MAX_EPOCH, ":")
        # Shuffles train sentence IDs.
        random.shuffle(train_ids)

        # Training.
        train_loss = 0
        for ofs in range(0, num_train_sents, BATCH_SIZE):
            batch_ids = train_ids[ofs:min(ofs + BATCH_SIZE, num_train_sents)]
            batch = make_batch(train_corpus, batch_ids, eos_id)

            g.clear()

            outputs = lm.forward(batch, True)
            loss = lm.loss(outputs, batch)
            train_loss += loss.to_float() * len(batch_ids)

            optimizer.reset_gradients()
            loss.backward()
            optimizer.update()

            print("%d" % ofs, end="\r")
            sys.stdout.flush()

        train_ppl = math.exp(train_loss / num_train_labels)
        print("  train ppl =", train_ppl)

        # Validation.
        valid_loss = 0
        for ofs in range(0, num_valid_sents, BATCH_SIZE):
            batch_ids = valid_ids[ofs:min(ofs + BATCH_SIZE, num_valid_sents)]
            batch = make_batch(valid_corpus, batch_ids, eos_id)

            g.clear()

            outputs = lm.forward(batch, False)
            loss = lm.loss(outputs, batch)
            valid_loss += loss.to_float() * len(batch_ids)
            print("%d" % ofs, end="\r")
            sys.stdout.flush()

        valid_ppl = math.exp(valid_loss / num_valid_labels)
        print("  valid ppl =", valid_ppl)

        if valid_ppl < best_valid_ppl:
            best_valid_ppl = valid_ppl
            print("  BEST")
        else:
            old_lr = optimizer.get_learning_rate_scaling()
            new_lr = 0.5 * old_lr
            optimizer.set_learning_rate_scaling(new_lr)
            print("  learning rate scaled:", old_lr, "->", new_lr)
コード例 #19
0
ファイル: parameter.py プロジェクト: primitiv/primitiv-python
 def setUp(self):
     self.dev = D.Naive()
     Device.set_default(self.dev)
     self.p = Parameter([8], I.Constant(0))
     self.p.value.reset_by_vector([1, 2, 3, 4, 5, 6, 7, 8])
コード例 #20
0
 def setUp(self):
     self.device = Naive()
     Device.set_default(self.device)
     self.graph = Graph()
     Graph.set_default(self.graph)
コード例 #21
0
ファイル: model.py プロジェクト: primitiv/primitiv-python
 def setUp(self):
     self.dev = D.Naive()
     Device.set_default(self.dev)
コード例 #22
0
ファイル: model_test.py プロジェクト: ideuchi/python-test
 def setUp(self):
     Device.set_default(ModelTest.device)