def main(): with DefaultScopeDevice(CPUDevice()): pw1 = Parameter("w1", [8, 2], I.XavierUniform()) pb1 = Parameter("b1", [8], I.Constant(0)) pw2 = Parameter("w2", [1, 8], I.XavierUniform()) pb2 = Parameter("b2", [], I.Constant(0)) trainer = T.SGD(0.1) trainer.add_parameter(pw1) trainer.add_parameter(pb1) trainer.add_parameter(pw2) trainer.add_parameter(pb2) input_data = np.array( [ [1, 1], # Sample 1 [1, -1], # Sample 2 [-1, 1], # Sample 3 [-1, -1], # Sample 4 ], dtype=np.float32) output_data = np.array( [ 1, # Label 1 -1, # Label 2 -1, # Label 3 1, # Label 4 ], dtype=np.float32) for i in range(100): g = Graph() with DefaultScopeGraph(g): # Builds a computation graph. #x = F.input(shape=Shape([2], 4), data=input_data) x = F.input(data=input_data) w1 = F.input(param=pw1) b1 = F.input(param=pb1) w2 = F.input(param=pw2) b2 = F.input(param=pb2) h = F.tanh(F.matmul(w1, x) + b1) y = F.matmul(w2, h) + b2 # Calculates values. y_val = g.forward(y).to_list() print("epoch ", i, ":") for j in range(4): print(" [", j, "]: ", y_val[j]) #t = F.input(shape=Shape([], 4), data=output_data) t = F.input(data=output_data) diff = t - y loss = F.batch.mean(diff * diff) loss_val = g.forward(loss).to_list()[0] print(" loss: ", loss_val) trainer.reset_gradients() g.backward(loss) trainer.update()
def main(): # Loads data train_inputs = load_images("data/train-images-idx3-ubyte", NUM_TRAIN_SAMPLES) train_labels = load_labels("data/train-labels-idx1-ubyte", NUM_TRAIN_SAMPLES) test_inputs = load_images("data/t10k-images-idx3-ubyte", NUM_TEST_SAMPLES) test_labels = load_labels("data/t10k-labels-idx1-ubyte", NUM_TEST_SAMPLES) # Uses GPU. #dev = CUDADevice(0) with DefaultScopeDevice(CPUDevice()): # Parameters for the multilayer perceptron. pw1 = Parameter("w1", [NUM_HIDDEN_UNITS, NUM_INPUT_UNITS], XavierUniform()) pb1 = Parameter("b1", [NUM_HIDDEN_UNITS], Constant(0)) pw2 = Parameter("w2", [NUM_OUTPUT_UNITS, NUM_HIDDEN_UNITS], XavierUniform()) pb2 = Parameter("b2", [NUM_OUTPUT_UNITS], Constant(0)) # Parameters for batch normalization. #Parameter pbeta("beta", {NUM_HIDDEN_UNITS}, Constant(0)); #Parameter pgamma("gamma", {NUM_HIDDEN_UNITS}, Constant(1)); # Trainer trainer = SGD(.5) trainer.add_parameter(pw1) trainer.add_parameter(pb1) trainer.add_parameter(pw2) trainer.add_parameter(pb2) #trainer.add_parameter(&pbeta); #trainer.add_parameter(&pgamma); # Helper lambda to construct the predictor network. def make_graph(inputs, train): # Stores input values. x = F.input(data=inputs) # Calculates the hidden layer. w1 = F.input(param=pw1) b1 = F.input(param=pb1) h = F.relu(F.matmul(w1, x) + b1) # Batch normalization #Node beta = F::input(pbeta); #Node gamma = F::input(pgamma); #h = F::batch::normalize(h) * gamma + beta; # Dropout h = F.dropout(h, .5, train) # Calculates the output layer. w2 = F.input(param=pw2) b2 = F.input(param=pb2) return F.matmul(w2, h) + b2 ids = list(range(NUM_TRAIN_SAMPLES)) for epoch in range(MAX_EPOCH): # Shuffles sample IDs. random.shuffle(ids) # Training loop for batch in range(NUM_TRAIN_BATCHES): print("\rTraining... %d / %d" % (batch + 1, NUM_TRAIN_BATCHES), end="") inputs = train_inputs[ids[batch * BATCH_SIZE:(batch + 1) * BATCH_SIZE]] labels = train_labels[ids[batch * BATCH_SIZE:(batch + 1) * BATCH_SIZE]] trainer.reset_gradients() # Constructs the graph. g = Graph() with DefaultScopeGraph(g): y = make_graph(inputs, True) loss = F.softmax_cross_entropy(y, labels, 0) avg_loss = F.batch.mean(loss) # Dump computation graph at the first time. #if (epoch == 0 && batch == 0) g.dump(); # Forward, backward, and updates parameters. g.forward(avg_loss) g.backward(avg_loss) trainer.update() print() match = 0 # Test loop for batch in range(NUM_TEST_BATCHES): print("\rTesting... %d / %d" % (batch + 1, NUM_TEST_BATCHES), end="") # Makes a test minibatch. inputs = test_inputs[batch * BATCH_SIZE:(batch + 1) * BATCH_SIZE] # Constructs the graph. with Graph() as g: y = make_graph(inputs, False) # Gets outputs, argmax, and compares them with the label. y_val = g.forward(y).to_list() for i in range(BATCH_SIZE): maxval = -1e10 argmax = -1 for j in range(NUM_OUTPUT_UNITS): v = y_val[j + i * NUM_OUTPUT_UNITS] if (v > maxval): maxval = v argmax = j if argmax == test_labels[i + batch * BATCH_SIZE]: match += 1 accuracy = 100.0 * match / NUM_TEST_SAMPLES print("\nepoch %d: accuracy: %.2f%%\n" % (epoch, accuracy))