コード例 #1
0
def main():

    with DefaultScopeDevice(CPUDevice()):
        pw1 = Parameter("w1", [8, 2], I.XavierUniform())
        pb1 = Parameter("b1", [8], I.Constant(0))
        pw2 = Parameter("w2", [1, 8], I.XavierUniform())
        pb2 = Parameter("b2", [], I.Constant(0))

        trainer = T.SGD(0.1)

        trainer.add_parameter(pw1)
        trainer.add_parameter(pb1)
        trainer.add_parameter(pw2)
        trainer.add_parameter(pb2)

        input_data = np.array(
            [
                [1, 1],  # Sample 1
                [1, -1],  # Sample 2
                [-1, 1],  # Sample 3
                [-1, -1],  # Sample 4
            ],
            dtype=np.float32)

        output_data = np.array(
            [
                1,  # Label 1
                -1,  # Label 2
                -1,  # Label 3
                1,  # Label 4
            ],
            dtype=np.float32)

        for i in range(100):
            g = Graph()
            with DefaultScopeGraph(g):
                # Builds a computation graph.
                #x = F.input(shape=Shape([2], 4), data=input_data)
                x = F.input(data=input_data)
                w1 = F.input(param=pw1)
                b1 = F.input(param=pb1)
                w2 = F.input(param=pw2)
                b2 = F.input(param=pb2)
                h = F.tanh(F.matmul(w1, x) + b1)
                y = F.matmul(w2, h) + b2

                # Calculates values.
                y_val = g.forward(y).to_list()
                print("epoch ", i, ":")
                for j in range(4):
                    print("  [", j, "]: ", y_val[j])
                    #t = F.input(shape=Shape([], 4), data=output_data)
                    t = F.input(data=output_data)
                diff = t - y
                loss = F.batch.mean(diff * diff)
                loss_val = g.forward(loss).to_list()[0]
                print("  loss: ", loss_val)
                trainer.reset_gradients()
                g.backward(loss)
                trainer.update()
コード例 #2
0
def main():
    # Loads data
    train_inputs = load_images("data/train-images-idx3-ubyte",
                               NUM_TRAIN_SAMPLES)
    train_labels = load_labels("data/train-labels-idx1-ubyte",
                               NUM_TRAIN_SAMPLES)
    test_inputs = load_images("data/t10k-images-idx3-ubyte", NUM_TEST_SAMPLES)
    test_labels = load_labels("data/t10k-labels-idx1-ubyte", NUM_TEST_SAMPLES)

    # Uses GPU.
    #dev = CUDADevice(0)
    with DefaultScopeDevice(CPUDevice()):

        # Parameters for the multilayer perceptron.
        pw1 = Parameter("w1", [NUM_HIDDEN_UNITS, NUM_INPUT_UNITS],
                        XavierUniform())
        pb1 = Parameter("b1", [NUM_HIDDEN_UNITS], Constant(0))
        pw2 = Parameter("w2", [NUM_OUTPUT_UNITS, NUM_HIDDEN_UNITS],
                        XavierUniform())
        pb2 = Parameter("b2", [NUM_OUTPUT_UNITS], Constant(0))

        # Parameters for batch normalization.
        #Parameter pbeta("beta", {NUM_HIDDEN_UNITS}, Constant(0));
        #Parameter pgamma("gamma", {NUM_HIDDEN_UNITS}, Constant(1));

        # Trainer
        trainer = SGD(.5)
        trainer.add_parameter(pw1)
        trainer.add_parameter(pb1)
        trainer.add_parameter(pw2)
        trainer.add_parameter(pb2)

        #trainer.add_parameter(&pbeta);
        #trainer.add_parameter(&pgamma);

        # Helper lambda to construct the predictor network.
        def make_graph(inputs, train):
            # Stores input values.
            x = F.input(data=inputs)
            # Calculates the hidden layer.
            w1 = F.input(param=pw1)
            b1 = F.input(param=pb1)
            h = F.relu(F.matmul(w1, x) + b1)
            # Batch normalization
            #Node beta = F::input(pbeta);
            #Node gamma = F::input(pgamma);
            #h = F::batch::normalize(h) * gamma + beta;
            # Dropout
            h = F.dropout(h, .5, train)
            # Calculates the output layer.
            w2 = F.input(param=pw2)
            b2 = F.input(param=pb2)
            return F.matmul(w2, h) + b2

        ids = list(range(NUM_TRAIN_SAMPLES))

        for epoch in range(MAX_EPOCH):
            # Shuffles sample IDs.
            random.shuffle(ids)

            # Training loop
            for batch in range(NUM_TRAIN_BATCHES):
                print("\rTraining... %d / %d" % (batch + 1, NUM_TRAIN_BATCHES),
                      end="")
                inputs = train_inputs[ids[batch * BATCH_SIZE:(batch + 1) *
                                          BATCH_SIZE]]
                labels = train_labels[ids[batch * BATCH_SIZE:(batch + 1) *
                                          BATCH_SIZE]]

                trainer.reset_gradients()

                # Constructs the graph.
                g = Graph()
                with DefaultScopeGraph(g):
                    y = make_graph(inputs, True)
                    loss = F.softmax_cross_entropy(y, labels, 0)
                    avg_loss = F.batch.mean(loss)

                    # Dump computation graph at the first time.
                    #if (epoch == 0 && batch == 0) g.dump();

                    # Forward, backward, and updates parameters.
                    g.forward(avg_loss)
                    g.backward(avg_loss)

                    trainer.update()

            print()

            match = 0

            # Test loop
            for batch in range(NUM_TEST_BATCHES):
                print("\rTesting... %d / %d" % (batch + 1, NUM_TEST_BATCHES),
                      end="")
                # Makes a test minibatch.
                inputs = test_inputs[batch * BATCH_SIZE:(batch + 1) *
                                     BATCH_SIZE]

                # Constructs the graph.
                with Graph() as g:
                    y = make_graph(inputs, False)

                    # Gets outputs, argmax, and compares them with the label.
                    y_val = g.forward(y).to_list()
                    for i in range(BATCH_SIZE):
                        maxval = -1e10
                        argmax = -1
                        for j in range(NUM_OUTPUT_UNITS):
                            v = y_val[j + i * NUM_OUTPUT_UNITS]
                            if (v > maxval):
                                maxval = v
                                argmax = j
                        if argmax == test_labels[i + batch * BATCH_SIZE]:
                            match += 1

            accuracy = 100.0 * match / NUM_TEST_SAMPLES
            print("\nepoch %d: accuracy: %.2f%%\n" % (epoch, accuracy))