コード例 #1
0
ファイル: dat_reader.py プロジェクト: liangwang0734/amrvac
def increment_progress_mp():
    """
    Small method to increment progress when using multiple processors
    """
    progress.value += 1
    if progress.value % 10 == 0 or progress.value == total.value:
        print_tools.progress(progress.value,
                             total.value,
                             status='-- iterating over blocks...')
    return
コード例 #2
0
ファイル: ionization.py プロジェクト: liangwang0734/amrvac
def get_i_f(data, altitude=20000):
    """
    Returns the degree of ionization for each datapoint in the given input.
    :param data: Reduced data object.
    :param altitude: Altitude at which to evaluate (in km).
                     Default is 20000, otherwise rounded to nearest base 1e4 integer.
                     Type is double or integer
    :return: i | Degree of ionization at each data point of the input matrix.
                 Type is np.ndarray of dimension ndim.
             f | f-value at each data point of the input matrix,
                 multiplied by 1e16 (see table in paper).
                 Type is np.ndarray of dimension ndim.
    """
    #Perform altitude check
    if not altitude == 20000:
        altitude = _round_to_base(altitude, 10000)

    #Select ionization table
    if int(altitude) == 10000:
        i_table = ionization_10k
    elif int(altitude) == 20000:
        i_table = ionization_20k
    else:
        i_table = ionization_30k

    #Select f table
    if int(altitude) == 10000:
        f_table = f_10k
    elif int(altitude) == 20000:
        f_table = f_20k
    else:
        f_table = f_30k

    #Create bivariate spline approximation over rectangular mesh
    #Has to be done only once, then use it to evaluate (T, p) point
    spline_ion = RectBivariateSpline(T_table, pg_table, i_table)
    spline_f = RectBivariateSpline(T_table, pg_table, f_table)

    #Re-dimensionalize temperature and pressure
    temp = data.T * units.unit_temperature
    pg = data.p * units.unit_pressure

    # Prevent double loading during the same run
    if data.ion is not None and data.f_param is not None:
        return data.ion, data.f_param
    else:
        #See if data is already stored to disk:
        filen = print_tools.trim_filename(settings.filename)
        if os.path.isfile("interpolated_files/ion_" + filen +
                          ".npy") and os.path.isfile(
                              "interpolated_files/f_param_" + filen + ".npy"):
            print("Interpolated data already exists -- loading files.")
            print("    Loading Numpy files...")
            ion = np.load("interpolated_files/ion_" + filen + ".npy")
            f = np.load("interpolated_files/f_param_" + filen + ".npy")
            print("    Done.")
            data.ion = ion
            data.f_param = f * 1e16
            return ion, f * 1e16

    #Create matrix of same size of input
    ion = np.zeros_like(temp)
    f = np.zeros_like(temp)

    #Fast iteration over array elements (calls the C array operator API)
    it = np.nditer(temp, flags=['multi_index'])

    print("Interpolating matrix for ionization and f.")

    if data._ndim == 2:
        tot_points = len(data.T[0, :])
    else:
        tot_points = len(data.T[0, 0, :])

    ctr = 0
    while not it.finished:
        #Get current index of iterator, Type = Tuple
        idx = it.multi_index

        #Get temperature and pressure at current index
        t_i = temp[idx]
        p_i = pg[idx]

        #Interpolate ionization degree, save to current index
        ion[idx] = spline_ion.ev(t_i, p_i)
        #Interpolate f, save to current index
        f[idx] = spline_f.ev(t_i, p_i)

        #Advance iterator
        ctr += 1
        #Print out progress
        if ctr % 250 == 0:
            print_tools.progress(idx[-1], tot_points, '-- interpolating...')
        it.iternext()
    print_tools.progress(tot_points, tot_points, '-- completed.')
    print("\n")

    # save Numpy arrays for easy acces later on
    if settings.saveFiles:
        np.save("interpolated_files/ion_" + filen, ion)
        np.save("interpolated_files/f_param_" + filen, f)
        print("Interpolated arrays saved to")
        print("    interpolated_files/ion_" + filen + ".npy")
        print("    interpolated_files/f_param_" + filen + ".npy")

    data.ion = ion
    data.f_param = f * 1e16

    # Parameter f is tabulated in units of 10^16 cm-3
    return ion, f * 1e16
コード例 #3
0
ファイル: dat_reader.py プロジェクト: liangwang0734/amrvac
def get_amr_data_multiprocessing(dat):
    """
    Method to regrid entire mesh using the multiprocessing module.
    Same principle as the get_amr_data() method, except now each block that
    needs regridding is passed on to one of the multiple processors in use.
    :param dat: .dat file, opened in binary mode.
    :return: Dictionary containing grid data.
    """
    # Perform version check
    PY2 = sys.version_info[0] == 2

    h = get_header(dat)
    blocks = get_block_data(dat)

    refined_nx = 2**(h['levmax'] - 1) * h['domain_nx']
    domain_shape = np.append(refined_nx, h['nw'])
    d = np.zeros(domain_shape, order='F')

    max_lvl = h['levmax']
    # Get amount of blocks that need regridding
    print_regrid_amount(blocks, max_lvl)

    # Create multiprocessing iterable
    block_iterable = [(b, h) for b in blocks]
    # Create variable for multiprocess progress tracking
    init_progress = multiprocessing.Value("i", 0)
    mp_bool = multiprocessing.Value("i", True)
    total_blocks = multiprocessing.Value("i", len(blocks))

    #Initialize multiprocessing pool
    pool = multiprocessing.Pool(
        initializer=multiprocessing_init,
        initargs=[init_progress, mp_bool, total_blocks],
        processes=settings.nb_of_procs)

    print_tools.progress(0, 100, status='-- iterating over blocks...')
    #The aray blocks_regridded contains the data for each regridded block
    #:note: pool.(star)map obeys the array order during parallelization, i.e.
    #       blocks_regridded[i] equals the calculation for blocks[i]
    if h['ndim'] == 1:
        if PY2:
            blocks_regridded = np.array(
                pool.map(interpolate_block_1d_unpack, block_iterable))
        else:
            blocks_regridded = np.array(
                pool.starmap(interpolate_block_1d, block_iterable))
    elif h['ndim'] == 2:
        if PY2:
            blocks_regridded = np.array(
                pool.map(interpolate_block_2d_unpack, block_iterable))
        else:
            blocks_regridded = np.array(
                pool.starmap(interpolate_block_2d, block_iterable))
    else:
        if PY2:
            blocks_regridded = np.array(
                pool.map(interpolate_block_3d_unpack, block_iterable))
        else:
            blocks_regridded = np.array(
                pool.starmap(interpolate_block_3d, block_iterable))
    pool.close()
    pool.join()
    print_tools.progress(100, 100, status='-- completed.')
    print("\n")

    # Fill arrays with regridded data
    for i in range(len(blocks)):
        b = blocks[i]
        block_lvl = b['lvl']
        block_idx = b['ix']

        grid_diff = 2**(max_lvl - block_lvl)

        max_idx = block_idx * grid_diff
        min_idx = max_idx - grid_diff

        idx0 = min_idx * h['block_nx']

        if h['ndim'] == 1:
            if block_lvl == max_lvl:
                idx1 = idx0 + h['block_nx']
                d[idx0[0]:idx1[0], :] = b['w']
            else:
                idx1 = idx0 + (h['block_nx'] * grid_diff)
                d[idx0[0]:idx1[0], :] = blocks_regridded[i]

        elif h['ndim'] == 2:
            if block_lvl == max_lvl:
                idx1 = idx0 + h['block_nx']
                d[idx0[0]:idx1[0], idx0[1]:idx1[1], :] = b['w']
            else:
                idx1 = idx0 + (h['block_nx'] * grid_diff)
                d[idx0[0]:idx1[0], idx0[1]:idx1[1], :] = blocks_regridded[i]
        elif h['ndim'] == 3:
            if block_lvl == max_lvl:
                idx1 = idx0 + h['block_nx']
                d[idx0[0]:idx1[0], idx0[1]:idx1[1],
                  idx0[2]:idx1[2], :] = b['w']
            else:
                idx1 = idx0 + (h['block_nx'] * grid_diff)
                d[idx0[0]:idx1[0], idx0[1]:idx1[1],
                  idx0[2]:idx1[2], :] = blocks_regridded[i]
        else:
            raise IOError("Unknown number of dimensions %s" % h['ndim'])

    save_regridded_data(d)

    return d
コード例 #4
0
ファイル: dat_reader.py プロジェクト: liangwang0734/amrvac
def get_amr_data(dat):
    """
    Returns a uniform grid in the case the mesh is not uniformely refined, hence
    when the method call to get_uniform_data() throws an IOError.
    This method calculates the maximum refinement level present in the grid, and regrids
    the entire mesh to this level. Blocks at a higher level than the maximum are refined using
    linear interpolation.
    :param dat: .dat file, opened in binary mode.
    :return: Dictionary containing grid data.
    :raise IOError: If number of dimensions in the header is not equal to 1, 2 or 3 for some reason.
    """
    h = get_header(dat)
    blocks = get_block_data(dat)

    refined_nx = 2**(h['levmax'] - 1) * h['domain_nx']
    #Perform regridding to finest level
    domain_shape = np.append(refined_nx, h['nw'])
    d = np.zeros(domain_shape, order='F')

    max_lvl = h['levmax']
    #Get amount of blocks that need regridding
    print_regrid_amount(blocks, max_lvl)

    # No multiprocessing, so set mp_activated to False
    mp_bool = multiprocessing.Value("i", False)
    multiprocessing_init(0, mp_bool, len(blocks))

    counter = 0
    print_tools.progress(counter,
                         len(blocks),
                         status='-- iterating over blocks...')
    for b in blocks:

        block_lvl = b['lvl']
        block_idx = b['ix']

        grid_diff = 2**(max_lvl - block_lvl)

        max_idx = block_idx * grid_diff
        min_idx = max_idx - grid_diff

        if h['ndim'] == 1:
            idx0 = min_idx * h['block_nx']
            if block_lvl == max_lvl:
                idx1 = idx0 + h['block_nx']
                d[idx0[0]:idx1[0], :] = b['w']
            else:
                idx1 = idx0 + (h['block_nx'] * grid_diff)
                d[idx0[0]:idx1[0], :] = interpolate_block_1d(b, h)

        elif h['ndim'] == 2:
            idx0 = min_idx * h['block_nx']
            if block_lvl == max_lvl:
                #block is on finest level, return block
                idx1 = idx0 + h['block_nx']
                d[idx0[0]:idx1[0], idx0[1]:idx1[1], :] = b['w']
            else:
                #block is not on finest level, so interpolate
                idx1 = idx0 + (h['block_nx'] * grid_diff)
                d[idx0[0]:idx1[0],
                  idx0[1]:idx1[1], :] = interpolate_block_2d(b, h)

        elif h['ndim'] == 3:
            idx0 = min_idx * h['block_nx']
            if block_lvl == max_lvl:
                idx1 = idx0 + h['block_nx']
                d[idx0[0]:idx1[0], idx0[1]:idx1[1],
                  idx0[2]:idx1[2], :] = b['w']
            else:
                idx1 = idx0 + (h['block_nx'] * grid_diff)
                d[idx0[0]:idx1[0], idx0[1]:idx1[1],
                  idx0[2]:idx1[2], :] = interpolate_block_3d(b, h)
        else:
            raise IOError("Unknown number of dimensions %s" % h['ndim'])

        counter += 1
        if counter % 10 == 0 or counter == len(blocks):
            print_tools.progress(counter,
                                 len(blocks),
                                 status='-- iterating over blocks...')
    print("\n")

    save_regridded_data(d)

    return d