def yuNetDetection(self, frame): if self.init == 0: frameWidth, frameHeight = frame.shape[:2] self.pb = PriorBox(input_shape=(640, 480), output_shape=(frameHeight, frameWidth)) self.init = 1 blob = cv2.dnn.blobFromImage(frame, size=(640, 480)) outputNames = ['loc', 'conf', 'iou'] self.detector.setInput(blob) loc, conf, iou = self.detector.forward(outputNames) dets = self.pb.decode(np.squeeze(loc, axis=0), np.squeeze(conf, axis=0), np.squeeze(iou, axis=0)) idx = np.where(dets[:, -1] > self.confidence)[0] dets = dets[idx] if dets.shape[0]: facess = nms(dets, self.threshold) else: facess = () return facess faces = np.array(facess[:, :4]) faces = faces.astype(np.int) faceStartXY = faces[:, :2] faceEndXY = faces[:, 2:4] faceWH = faceEndXY - faceStartXY faces = np.hstack((faceStartXY, faceWH)) # scores = facess[:, -1] return faces
def __init__(self,args): if args.ctx and torch.cuda.is_available(): self.use_cuda = True else: self.use_cuda = False if self.use_cuda: torch.set_default_tensor_type('torch.cuda.FloatTensor') else: torch.set_default_tensor_type('torch.FloatTensor') self.loadmodel(args.headmodelpath) self.threshold = args.conf_thresh self.img_dir = args.img_dir self.detect = Detect(cfg) self.Prior = PriorBox(cfg) with torch.no_grad(): self.priors = self.Prior.forward()
def __init__(self, num_classes, num_blocks, top_k, conf_thresh, nms_thresh, variance): super(ASSD_ResNet101, self).__init__() self.num_classes = num_classes ############################################################################################ self.inplanes = 64 layers = [3, 4, 23, 3] self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(Bottleneck, 64, layers[0]) self.layer2 = self._make_layer(Bottleneck, 128, layers[1], stride=2) self.layer3 = self._make_layer(Bottleneck, 256, layers[2], stride=2) self.layer4 = self._make_layer(Bottleneck, 512, layers[3], stride=2) #self.L2Norm = L2Norm(n_channels=512, scale=20) self.extra_layers = nn.ModuleList( add_extras(layer_cfg['extra'], batch_norm=True)) self.conf_layers = nn.ModuleList( build_conf(layer_cfg['pred'], num_blocks, num_classes)) self.locs_layers = nn.ModuleList( build_locs(layer_cfg['pred'], num_blocks)) self.prior_boxes = PriorBox() self.prior_boxes = self.prior_boxes.forward() device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.prior_boxes = self.prior_boxes.to(device) self.fusion_layers = nn.ModuleList(fusionModule()) self.fusion_bn = nn.BatchNorm2d(768) #256*3 self.fusion_conv = nn.Conv2d(768, 512, kernel_size=1) self.att_layers = nn.ModuleList(make_attention()) self.softmax = nn.Softmax(dim=1) self.detect = Detect(num_classes=num_classes, top_k=top_k, conf_thresh=conf_thresh, nms_thresh=nms_thresh, variance=variance)
def __init__(self, phase, base, extras, head, num_classes): super(S3FD, self).__init__() self.phase = phase self.num_classes = num_classes ''' self.priorbox = PriorBox(size,cfg) self.priors = Variable(self.priorbox.forward(), volatile=True) ''' # SSD network self.vgg = nn.ModuleList(base) # Layer learns to scale the l2 normalized features from conv4_3 self.L2Norm3_3 = L2Norm(256, 10) self.L2Norm4_3 = L2Norm(512, 8) self.L2Norm5_3 = L2Norm(512, 5) self.extras = nn.ModuleList(extras) self.loc = nn.ModuleList(head[0]) self.conf = nn.ModuleList(head[1]) self.priorbox = PriorBox(cfg) with torch.no_grad(): self.priors = self.priorbox.forward()
img_resize = cv2.resize(img, dst=None, dsize=(input_shape), interpolation=cv2.INTER_LINEAR) hr, wr, _ = img_resize.shape print('Network input size: h={}, w={}'.format(hr, wr)) blob = cv2.dnn.blobFromImage(img_resize, size=input_shape) # run the net output_names = ['loc', 'conf'] net.setInput(blob) loc, conf = net.forward(output_names) # Decode bboxes and landmarks pb = PriorBox(input_shape=input_shape, output_shape=(w, h)) dets = pb.decode(np.squeeze(loc, axis=0), np.squeeze(conf, axis=0)) # Ignore low scores idx = np.where(dets[:, -1] > args.conf_thresh)[0] dets = dets[idx] # NMS if dets.shape[0] > 0: dets = nms(dets, args.nms_thresh) faces = dets[:args.keep_top_k, :] print('Detection results: {} faces found'.format(faces.shape[0])) print(faces) else: print('No faces found.') exit()
class ASSD_ResNet101(nn.Module): def __init__(self, num_classes, num_blocks, top_k, conf_thresh, nms_thresh, variance): super(ASSD_ResNet101, self).__init__() self.num_classes = num_classes ############################################################################################ self.inplanes = 64 layers = [3, 4, 23, 3] self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(Bottleneck, 64, layers[0]) self.layer2 = self._make_layer(Bottleneck, 128, layers[1], stride=2) self.layer3 = self._make_layer(Bottleneck, 256, layers[2], stride=2) self.layer4 = self._make_layer(Bottleneck, 512, layers[3], stride=2) #self.L2Norm = L2Norm(n_channels=512, scale=20) self.extra_layers = nn.ModuleList( add_extras(layer_cfg['extra'], batch_norm=True)) self.conf_layers = nn.ModuleList( build_conf(layer_cfg['pred'], num_blocks, num_classes)) self.locs_layers = nn.ModuleList( build_locs(layer_cfg['pred'], num_blocks)) self.prior_boxes = PriorBox() self.prior_boxes = self.prior_boxes.forward() device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.prior_boxes = self.prior_boxes.to(device) self.fusion_layers = nn.ModuleList(fusionModule()) self.fusion_bn = nn.BatchNorm2d(768) #256*3 self.fusion_conv = nn.Conv2d(768, 512, kernel_size=1) self.att_layers = nn.ModuleList(make_attention()) self.softmax = nn.Softmax(dim=1) self.detect = Detect(num_classes=num_classes, top_k=top_k, conf_thresh=conf_thresh, nms_thresh=nms_thresh, variance=variance) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x, phase=None): feat = [] x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) #(2L, 256L, 129L, 129L) x = self.layer2(x) #(2L, 512L, 65L, 65L) feat += [x] feat0 = x x = self.layer3(x) #(2L, 1024L, 33L, 33L) feat += [x] feat1 = x x = self.layer4(x) feat += [x] feat2 = x for k, v in enumerate(self.extra_layers): x = v(x) if k in [5, 11, 17, 23]: feat += [x] ########## fusion ################################################# feat0 = self.fusion_layers[0](feat0) feat1 = F.upsample_bilinear(self.fusion_layers[1](feat1), size=(65, 65)) feat2 = F.upsample_bilinear(self.fusion_layers[2](feat2), size=(65, 65)) feat[0] = F.relu( self.fusion_conv( self.fusion_bn(torch.cat([feat0, feat1, feat2], dim=1)))) ################################################################## feat_new = [] for (x, l) in zip(feat, self.att_layers): feat_new.append(l(x)) ########## PreEnd ################################################# locs = [] conf = [] for (x, l, c) in zip(feat_new, self.locs_layers, self.conf_layers): locs += [l(x).permute(0, 2, 3, 1).contiguous()] conf += [c(x).permute(0, 2, 3, 1).contiguous()] locs = torch.cat([o.view(o.size(0), -1) for o in locs], dim=1) conf = torch.cat([o.view(o.size(0), -1) for o in conf], dim=1) if phase == 'test': output = self.detect(locs.view(locs.size(0), -1, 4), self.softmax(conf.view(-1, self.num_classes)), self.prior_boxes.type(type(x.data))) else: output = (locs.view(locs.size(0), -1, 4), conf.view(conf.size(0), -1, self.num_classes), self.prior_boxes) return output
loc[:, 8:10] * self.variance[0] * self.priors[:, 2:4], self.priors[:, 0:2] + loc[:, 10:12] * self.variance[0] * self.priors[:, 2:4], self.priors[:, 0:2] + loc[:, 12:14] * self.variance[0] * self.priors[:, 2:4])) # scale recover landmark_scale = np.array([self.out_w, self.out_h] * 5) landmarks = landmarks * landmark_scale # get score cls_scores = conf[:, 1] iou_scores = iou[:, 0] scores = np.sqrt(cls_scores * iou_scores) scores = scores[:, np.newaxis] dets = np.hstack((bboxes, landmarks, scores)) return dets if __name__ == '__main__': from priorbox import PriorBox pb = PriorBox() print(pb.generate_priors().shape) loc = np.random.rand(1, 4385, 14) conf = np.random.rand(1, 4385, 2) iou = np.random.rand(1, 4385, 1) dets = pb.decode(np.squeeze(loc, axis=0), np.squeeze(conf, axis=0), np.squeeze(iou, axis=0)) print(dets.shape)
print('Image size: h={}, w={}'.format(h, w)) blob = cv2.dnn.blobFromImage( img) # 'size' param resize the output to the given shape # Load the net net = cv2.dnn.readNet(args.model) net.setPreferableBackend(args.backend) net.setPreferableTarget(args.target) # Run the net output_names = ['loc', 'conf', 'iou'] net.setInput(blob) loc, conf, iou = net.forward(output_names) # Decode bboxes and landmarks pb = PriorBox(input_shape=(w, h), output_shape=(w, h)) dets = pb.decode(np.squeeze(loc, axis=0), np.squeeze(conf, axis=0), np.squeeze(iou, axis=0), args.conf_thresh) # NMS if dets.shape[0] > 0: dets = nms(dets, args.nms_thresh) faces = dets[:args.keep_top_k, :] print('Detection results: {} faces found'.format(faces.shape[0])) print(faces) else: print('No faces found.') exit() # Draw boudning boxes and landmarks on the original image img_res = draw(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), faces[:, :4],
class faceDetectorModel: def __init__(self, method='haarCascades', gpu=0, confidence=0.7, threshold=0.3): self.gpu = gpu self.method = method self.init = 0 self.detector = None self.pb = None self.detectorInit() self.confidence = confidence self.threshold = threshold def detectorInit(self): if self.method == 'haarCascades': if self.gpu == 0: self.detector = cv2.CascadeClassifier( 'faceDetect/haarcascade_frontalface_default.xml') elif self.gpu == 1: self.detector = cv2.cuda.CascadeClassifier_create( 'faceDetect' '/haarcascade_frontalface_default_cuda.xml') elif self.method == 'lbpCascades': if self.gpu == 0: self.detector = cv2.CascadeClassifier( 'faceDetect/lbpcascade_frontalface_improved.xml') elif self.gpu == 1: self.detector = cv2.cuda.CascadeClassifier_create( 'faceDetect/lbpcascade_frontalface_improved.xml') if self.method == 'yuNet': self.detector = cv2.dnn.readNet( 'faceDetect/YuFaceDetectNet_640.onnx') self.detector.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV) self.detector.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) def CascadesDetector(self, frame): if self.gpu == 1: faces = [] gpuFrame = cv2.cuda_GpuMat() gpuFrame.upload(frame) gpuMat = cv2.cuda.cvtColor(gpuFrame, cv2.COLOR_BGR2GRAY) objbuff = self.detector.detectMultiScale(gpuMat) facess = objbuff.download() if facess is None: facess = () np.array(facess) for multipleFace in facess: for face in multipleFace: faces.append(face) return faces elif self.gpu == 0: grayFrame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = self.detector.detectMultiScale(grayFrame, scaleFactor=1.2, minNeighbors=5, minSize=(20, 20)) return faces def yuNetDetection(self, frame): if self.init == 0: frameWidth, frameHeight = frame.shape[:2] self.pb = PriorBox(input_shape=(640, 480), output_shape=(frameHeight, frameWidth)) self.init = 1 blob = cv2.dnn.blobFromImage(frame, size=(640, 480)) outputNames = ['loc', 'conf', 'iou'] self.detector.setInput(blob) loc, conf, iou = self.detector.forward(outputNames) dets = self.pb.decode(np.squeeze(loc, axis=0), np.squeeze(conf, axis=0), np.squeeze(iou, axis=0)) idx = np.where(dets[:, -1] > self.confidence)[0] dets = dets[idx] if dets.shape[0]: facess = nms(dets, self.threshold) else: facess = () return facess faces = np.array(facess[:, :4]) faces = faces.astype(np.int) faceStartXY = faces[:, :2] faceEndXY = faces[:, 2:4] faceWH = faceEndXY - faceStartXY faces = np.hstack((faceStartXY, faceWH)) # scores = facess[:, -1] return faces def predict(self, frame, painted=1): frameNew = frame.copy() faces = () if self.method == 'haarCascades' or self.method == 'lbpCascades': faces = self.CascadesDetector(frameNew) elif self.method == 'yuNet': faces = self.yuNetDetection(frameNew) if painted: for (x, y, w, h) in faces: cv2.rectangle(frameNew, (x, y), (x + w, y + h), (0, 0, 255)) return frameNew, faces
class S3FD(nn.Module): """Single Shot Multibox Architecture The network is composed of a base VGG network followed by the added multibox conv layers. Each multibox layer branches into 1) conv2d for class conf scores 2) conv2d for localization predictions 3) associated priorbox layer to produce default bounding boxes specific to the layer's feature map size. See: https://arxiv.org/pdf/1512.02325.pdf for more details. Args: phase: (string) Can be "test" or "train" size: input image size base: VGG16 layers for input, size of either 300 or 500 extras: extra layers that feed to multibox loc and conf layers head: "multibox head" consists of loc and conf conv layers """ def __init__(self, phase, base, extras, head, num_classes): super(S3FD, self).__init__() self.phase = phase self.num_classes = num_classes ''' self.priorbox = PriorBox(size,cfg) self.priors = Variable(self.priorbox.forward(), volatile=True) ''' # SSD network self.vgg = nn.ModuleList(base) # Layer learns to scale the l2 normalized features from conv4_3 self.L2Norm3_3 = L2Norm(256, 10) self.L2Norm4_3 = L2Norm(512, 8) self.L2Norm5_3 = L2Norm(512, 5) self.extras = nn.ModuleList(extras) self.loc = nn.ModuleList(head[0]) self.conf = nn.ModuleList(head[1]) self.priorbox = PriorBox(cfg) with torch.no_grad(): self.priors = self.priorbox.forward() # if self.phase == 'test': # self.softmax = nn.Softmax(dim=-1) # self.detect = Detect(cfg) def forward(self, x): """Applies network layers and ops on input image(s) x. Args: x: input image or batch of images. Shape: [batch,3,300,300]. Return: Depending on phase: test: Variable(tensor) of output class label predictions, confidence score, and corresponding location predictions for each object detected. Shape: [batch,topk,7] train: list of concat outputs from: 1: confidence layers, Shape: [batch*num_priors,num_classes] 2: localization layers, Shape: [batch,num_priors*4] 3: priorbox layers, Shape: [2,num_priors*4] """ #size = x.size()[2:] sources = list() loc = list() conf = list() # apply vgg up to conv4_3 relu for k in range(16): x = self.vgg[k](x) s = self.L2Norm3_3(x) sources.append(s) #print('conv3:',s.size()) # apply vgg up to fc7 for k in range(16, 23): x = self.vgg[k](x) s = self.L2Norm4_3(x) sources.append(s) #print('conv4:',s.size()) for k in range(23, 30): x = self.vgg[k](x) s = self.L2Norm5_3(x) sources.append(s) for k in range(30, len(self.vgg)): x = self.vgg[k](x) sources.append(x) # apply extra layers and cache source layer outputs for k, v in enumerate(self.extras): x = F.relu(v(x), inplace=True) if k % 2 == 1: sources.append(x) # apply multibox head to source layers loc_x = self.loc[0](sources[0]) conf_x = self.conf[0](sources[0]) max_conf, _ = torch.max(conf_x[:, 0:3, :, :], dim=1, keepdim=True) conf_x = torch.cat((max_conf, conf_x[:, 3:, :, :]), dim=1) loc.append(loc_x.permute(0, 2, 3, 1).contiguous()) conf.append(conf_x.permute(0, 2, 3, 1).contiguous()) for i in range(1, len(sources)): x = sources[i] conf.append(self.conf[i](x).permute(0, 2, 3, 1).contiguous()) loc.append(self.loc[i](x).permute(0, 2, 3, 1).contiguous()) ''' for (x, l, c) in zip(sources, self.loc, self.conf): loc.append(l(x).permute(0, 2, 3, 1).contiguous()) conf.append(c(x).permute(0, 2, 3, 1).contiguous()) ''' # features_maps = [] # for i in range(len(loc)): # feat = [] # feat += [loc[i].size(1), loc[i].size(2)] # features_maps += [feat] # print(i,loc[i].size(1), loc[i].size(2)) #Variable(self.priorbox.forward(), volatile=True) loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1) conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1) # if self.phase == 'test': # output = self.detect( # loc.view(loc.size(0), -1, 4), # self.softmax(conf.view(conf.size(0), -1,self.num_classes)), # self.priors) # else: # output = ( # loc.view(loc.size(0), -1, 4), # conf.view(conf.size(0), -1,self.num_classes), # self.priors # ) output = (loc.view(loc.size(0), -1, 4), conf.view(conf.size(0), -1, self.num_classes), self.priors) return output
class HeadDetect(object): def __init__(self,args): if args.ctx and torch.cuda.is_available(): self.use_cuda = True else: self.use_cuda = False if self.use_cuda: torch.set_default_tensor_type('torch.cuda.FloatTensor') else: torch.set_default_tensor_type('torch.FloatTensor') self.loadmodel(args.headmodelpath) self.threshold = args.conf_thresh self.img_dir = args.img_dir self.detect = Detect(cfg) self.Prior = PriorBox(cfg) with torch.no_grad(): self.priors = self.Prior.forward() def loadmodel(self,modelpath): if self.use_cuda: device = 'cuda' else: device = 'cpu' # self.net = build_s3fd('test', cfg.NUM_CLASSES) self.net = S3FD(cfg.NUM_CLASSES) self.net.load_state_dict(torch.load(modelpath,map_location=device)) self.net.eval() # print(self.net) if self.use_cuda: self.net.cuda() cudnn.benckmark = True def propress(self,img): rgb_mean = np.array([123.,117.,104.])[np.newaxis, np.newaxis,:].astype('float32') img = cv2.resize(img,(cfg.resize_width,cfg.resize_height)) img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB) img = img.astype('float32') img -= rgb_mean #img = img[:,:,::-1] img = np.transpose(img,(2,0,1)) return img def xyxy2xywh(self,bbox_score): bboxes = bbox_score[0] bbox = bboxes[0] score = bboxes[1] bbox[:,2] = bbox[:,2] -bbox[:,0] bbox[:,3] = bbox[:,3] -bbox[:,1] bbox_out=[] scores = [] for j in range(bbox.shape[0]): dets = bbox[j] sc = score[j] min_re = min(dets[2],dets[3]) if min_re < 16: thresh = 0.2 else: thresh = 0.8 if sc >= thresh: bbox_out.append(dets) scores.append(sc) return np.array(bbox_out),np.array(scores) def nms_filter(self,bboxes,scale): boxes = bboxes[0][0] * scale scores = bboxes[0][1] ids, count = nms_py(boxes, scores, 0.3,1000) boxes = boxes[ids[:count]] scores = scores[ids[:count]] return [[boxes,scores]] def inference_img(self,imgorg): t1 = time.time() imgh,imgw = imgorg.shape[:2] scale = np.array([imgw,imgh,imgw,imgh]) scale = np.expand_dims(scale,0) img = self.propress(imgorg.copy()) bt_img = Variable(torch.from_numpy(img).unsqueeze(0)) if self.use_cuda: bt_img = bt_img.cuda() output = self.net(bt_img) t2 = time.time() with torch.no_grad(): bboxes = self.detect(output[0],output[1],self.priors) t3 = time.time() bboxes = self.nms_filter(bboxes,scale) print('consuming:',t2-t1,t3-t2) #showimg = self.label_show(bboxes,imgorg) bbox = [] score = [] if len(bboxes)>0: bbox,score = self.xyxy2xywh(bboxes) # showimg = self.label_show(bbox,score,imgorg) return bbox,score # return showimg,bbox def label_show(self,rectangles,scores,img): # imgh,imgw,_ = img.shape # scale = np.array([imgw,imgh,imgw,imgh]) for j in range(rectangles.shape[0]): dets = rectangles[j] score = scores[j] x1,y1 = dets[:2] x2,y2 = dets[:2] +dets[2:] cv2.rectangle(img,(int(x1),int(y1)),(int(x2),int(y2)),(0,0,255),2) txt = "{:.3f}".format(score) point = (int(x1),int(y1-5)) cv2.putText(img,txt,point,cv2.FONT_HERSHEY_COMPLEX,0.5,(0,255,0),1) return img def detectheads(self,imgpath): if os.path.isdir(imgpath): cnts = os.listdir(imgpath) for tmp in cnts: tmppath = os.path.join(imgpath,tmp.strip()) img = cv2.imread(tmppath) if img is None: continue showimg,_ = self.inference_img(img) cv2.imshow('demo',showimg) cv2.waitKey(0) elif os.path.isfile(imgpath) and imgpath.endswith('txt'): # if not os.path.exists(self.save_dir): # os.makedirs(self.save_dir) f_r = open(imgpath,'r') file_cnts = f_r.readlines() for j in tqdm(range(len(file_cnts))): tmp_file = file_cnts[j].strip() if len(tmp_file.split(','))>0: tmp_file = tmp_file.split(',')[0] if not tmp_file.endswith('jpg'): tmp_file = tmp_file +'.jpeg' tmp_path = os.path.join(self.img_dir,tmp_file) if not os.path.exists(tmp_path): print(tmp_path) continue img = cv2.imread(tmp_path) if img is None: print('None',tmp) continue frame,_ = self.inference_img(img) cv2.imshow('result',frame) #savepath = os.path.join(self.save_dir,save_name) #cv2.imwrite('test.jpg',frame) cv2.waitKey(0) elif os.path.isfile(imgpath) and imgpath.endswith(('.mp4','.avi')) : cap = cv2.VideoCapture(imgpath) if not cap.isOpened(): print("failed open camera") return 0 else: while cap.isOpened(): _,img = cap.read() frame,_ = self.inference_img(img) cv2.imshow('result',frame) q=cv2.waitKey(10) & 0xFF if q == 27 or q ==ord('q'): break cap.release() cv2.destroyAllWindows() elif os.path.isfile(imgpath): img = cv2.imread(imgpath) if img is not None: # grab next frame # update FPS counter frame,odm_maps = self.inference_img(img) # hotmaps = self.get_hotmaps(odm_maps) # self.display_hotmap(hotmaps) # keybindings for display cv2.imshow('result',frame) #cv2.imwrite('test30.jpg',frame) key = cv2.waitKey(0) else: print('please input the right img-path')