コード例 #1
0
ファイル: Exercises2.py プロジェクト: ludus94/SNA_project1
def top_rank(k,rank):
    pq = PriorityQueue()
    for u in rank.keys():
        pq.add(u, -rank[u])  # We use negative value because PriorityQueue returns first values whose priority value is lower
    out=[]
    for i in range(k):
        out.append(pq.pop())
    return out
コード例 #2
0
ファイル: Exercises2.py プロジェクト: ludus94/SNA_project1
def top(G,measure,k):
    pq = PriorityQueue()
    cen=measure(G)
    for u in G.nodes():
        pq.add(u, -cen[u])  # We use negative value because PriorityQueue returns first values whose priority value is lower
    out=[]
    for i in range(k):
        out.append(pq.pop())
    return out
コード例 #3
0
ファイル: Exercises2.py プロジェクト: ludus94/SNA_project1
def top_hits_parall(G,k,num_node,j):
    pq = PriorityQueue()
    pq2=PriorityQueue()
    auth_n,hubs_n=parallel_hits(G,k,j)
    for u in G.nodes():
        pq.add(u, -auth_n[u])  # We use negative value because PriorityQueue returns first values whose priority value is lower
    for u in G.nodes():
        pq2.add(u, -hubs_n[u])  # We use negative value because PriorityQueue returns first values whose priority value is lower
    out=[]
    out2=[]
    for i in range(num_node):
        out.append(pq.pop())
        out2.append(pq2.pop())
    return out,out2
コード例 #4
0
ファイル: Exercises2.py プロジェクト: ludus94/SNA_project1
def top_parallel(G,k,j):
    pq = PriorityQueue()
    with Parallel(n_jobs=j) as parallel:
        #Run in parallel diameter function on each processor by passing to each processor only the subset of nodes on which it works
        result=parallel(delayed(closeness_par)(G,X) for X in chunks(G.nodes(), math.ceil(len(G.nodes())/j)))

    for u in result:#u is a dict
        for el in u.keys():
            pq.add(el, -u[el])
      # We use negative value because PriorityQueue returns first values whose priority value is lower
    out=[]
    for i in range(k):
        out.append(pq.pop())
    return out
コード例 #5
0
ファイル: Exercises2.py プロジェクト: ludus94/SNA_project1
def top_betweenness(G,k,j):
    #PARALLELIZZAZIONE
    pq=PriorityQueue()
    with Parallel(n_jobs=j) as parallel:
        #Run in parallel diameter function on each processor by passing to each processor only the subset of nodes on which it works
        lista=parallel(delayed(betweenness_par)(G,X) for X in chunks(G.nodes(), math.ceil(len(G.nodes())/j)))
        #Aggregates the results

    for j in lista:
        for i in j[1].keys():
            pq.add(i,-j[1][i])#Fase di assemblaggio

    out=[]
    for i in range(k):
        out.append(pq.pop())
    return out
コード例 #6
0
ファイル: Exercises1.py プロジェクト: ludus94/SNA_project1
def bwt_cluster_naive(G):
    eb, nb = betweenness(G)
    pq = PriorityQueue()
    for i in eb.keys():
        pq.add(i, -eb[i])
    graph = G.copy()

    done = False
    while not done:
        edge = tuple(sorted(pq.pop()))
        graph.remove_edges_from([edge])
        list_connected_comp = list(nx.connected_components(graph))
        if len(list(nx.connected_components(graph))) == 4:
            done = True

    return list_connected_comp
コード例 #7
0
ファイル: Exercises1.py プロジェクト: ludus94/SNA_project1
def bwt_cluster_parallel(G,j):
    #PARALLELIZZAZIONE
    pq=PriorityQueue()
    with Parallel(n_jobs=j) as parallel:
        #Run in parallel diameter function on each processor by passing to each processor only the subset of nodes on which it works
        lista=parallel(delayed(betweenness_par)(G,X) for X in chunks(G.nodes(), math.ceil(len(G.nodes())/j)))
        #Aggregates the results

    for j in lista:
        for i in j[0].keys():
            pq.add(i,-j[0][i])#Fase di assemblaggio

    graph=G.copy()
    done=False
    while not done:

        edge=tuple(sorted(pq.pop()))
        graph.remove_edges_from([edge])

        list_connected_comp=list(nx.connected_components(graph))
        if len(list(nx.connected_components(graph))) == 4:
             done = True
    return list_connected_comp
コード例 #8
0
ファイル: Exercises1.py プロジェクト: ludus94/SNA_project1
def hierarchical(G,sample=None):

    if sample is None:
        sample=G.nodes()

    # Create a priority queue with each pair of nodes indexed by distance
    pq = PriorityQueue()
    for u in sample:
        for v in sample:
            if u != v:
                if (u, v) in G.edges() or (v, u) in G.edges():
                    pq.add(frozenset([frozenset([u]), frozenset([v])]), 0)
                else:
                    pq.add(frozenset([frozenset([u]), frozenset([v])]), 1)

    # Start with a cluster for each node
    clusters = set(frozenset([u]) for u in sample)

    done = False
    while not done:
        # Merge closest clusters
        s = list(pq.pop())
        clusters.remove(s[0])
        clusters.remove(s[1])

        # Update the distance of other clusters from the merged cluster
        for w in clusters:
            e1 = pq.remove(frozenset([s[0], w]))
            e2 = pq.remove(frozenset([s[1], w]))
            if e1 == 0 or e2 == 0:
                pq.add(frozenset([s[0] | s[1], w]), 0)
            else:
                pq.add(frozenset([s[0] | s[1], w]), 1)

        clusters.add((s[0] | s[1]))

        if len(clusters) ==4:
            done = True

    return clusters