コード例 #1
0
ファイル: toolbox.py プロジェクト: libin1987832/pypdas
def test_pdas():
    'Test function for pdas()'
    # Generate a random QP
    qp = randQP(size=100, numeq=1, numineq=1)
    pdas(qp.H, qp.c, qp.Aeq, qp.beq, qp.A, qp.bl, qp.bu, qp.l, qp.u, qp.x0)

    # Solve the random bound constrained QP
    pdas(qp.H, qp.c, l=qp.l, u=qp.u, x0=qp.x0)
コード例 #2
0
ファイル: toolbox.py プロジェクト: zhh210/pypdas
def test_pdas():
    'Test function for pdas()'
    # Generate a random QP
    qp = randQP(size = 100, numeq = 1, numineq = 1)
    pdas(qp.H,qp.c,qp.Aeq,qp.beq,qp.A,qp.bl,qp.bu,qp.l,qp.u,qp.x0)

    # Solve the random bound constrained QP
    pdas(qp.H,qp.c,l=qp.l,u=qp.u,x0=qp.x0)
コード例 #3
0
ファイル: test_randqp.py プロジェクト: libin1987832/pypdas
def test_pdas():
    'Test function of pdas'
    print 'testing function _test_pdas()\n'
    qp = randQP(100)
    pdas = PDAS(qp)
    #p = obs.printer(pdas)
    #pdas.register('printer',p)
    #c = obs.conditioner(pdas)
    #pdas.register('conditioner',c)
    #pdas.ssm()
    #pdas.newp()
    pdas2 = copy(pdas)
    pdas.exact_solve()
    pdas2.inexact_solve()
コード例 #4
0
ファイル: test_randqp.py プロジェクト: zhh210/pypdas
def test_pdas():
    'Test function of pdas'
    print 'testing function _test_pdas()\n'
    qp = randQP(100)
    pdas = PDAS(qp)
    #p = obs.printer(pdas)
    #pdas.register('printer',p)
    #c = obs.conditioner(pdas)
    #pdas.register('conditioner',c)
    #pdas.ssm()
    #pdas.newp()
    pdas2 = copy(pdas)
    pdas.exact_solve()
    pdas2.inexact_solve()
コード例 #5
0
from prob import randQP, randBQP
from pdas.pdas import PDAS
from copy import copy

# Generate a random sparse matrix with 3 rows, 4 columns, sparsity 0.8
mat = sp_rand(3, 4, 0.8)
print(mat)

# Generate a random positive definite matrix with 5 variables,
# condition number 100, sparsity 0.5. Note: random Jocobi rotations
# are applied.
pdmat = sprandsym(size=5, cond=100, sp=0.5)
print(pdmat)

# Generate a random QP with 100 variables, 1 equality, 1 inequaity
qp = randQP(size=100, numeq=1, numineq=1)

# Generate a random bound constrained QP with 100 variables
bqp = randBQP(size=100)

# Another way to generate a random bound constrained QP with 100 variables
bqp2 = randQP(size=100, numeq=0, numineq=0)

# Solve the random bound constrained QP by PDAS with exact solve
pdas = PDAS(bqp)
print 'Solving random bound-constrained QP with exact subproblem solve:'
pdas.exact_solve()

# Solve the random bound constrained QP by PDAS with inexact solve
# import pdb
# pdb.set_trace()
コード例 #6
0
ファイル: eg_rand.py プロジェクト: zhh210/pypdas
from prob import randQP, randBQP
from pdas.pdas import PDAS
from copy import copy

# Generate a random sparse matrix with 3 rows, 4 columns, sparsity 0.8
mat = sp_rand(3,4,0.8)
print(mat)

# Generate a random positive definite matrix with 5 variables, 
# condition number 100, sparsity 0.5. Note: random Jocobi rotations
# are applied.
pdmat = sprandsym(size=5,cond=100,sp=0.5)
print(pdmat)

# Generate a random QP with 100 variables, 1 equality, 1 inequaity
qp = randQP(size = 100, numeq = 1, numineq = 1)

# Generate a random bound constrained QP with 100 variables
bqp = randBQP(size = 100) 

# Another way to generate a random bound constrained QP with 100 variables
bqp2 = randQP(size = 100, numeq = 0, numineq = 0) 


# Solve the random bound constrained QP by PDAS with exact solve
pdas = PDAS(bqp)
print 'Solving random bound-constrained QP with exact subproblem solve:'
pdas.exact_solve()

# Solve the random bound constrained QP by PDAS with inexact solve
# import pdb