def test_get_value_and_get_approx_value_nonlin_constr(self): """ min x^2 -2x + 1 st. x^2 == 4 when convexified at x = 1, min x^2 -2x + 1 + penalty_coeff*|2x-5| when penalty_coeff == 0.5, solution is x = 1.5 and the value is 1.25 (according to Wolfram Alpha) approx value should be 1.25 value should be 1.125 """ quad = QuadExpr(2 * np.eye(1), -2 * np.ones((1, 1)), np.ones((1, 1))) quad_cnt = QuadExpr(2 * np.eye(1), np.zeros((1, 1)), np.zeros((1, 1))) eq = EqExpr(quad_cnt, np.array([[4]])) model = grb.Model() prob = Prob(model) grb_var = model.addVar(lb=-1 * GRB.INFINITY, ub=GRB.INFINITY, name='x') grb_vars = np.array([[grb_var]]) var = Variable(grb_vars, np.array([[1.0]])) model.update() obj = BoundExpr(quad, var) prob.add_obj_expr(obj) bexpr = BoundExpr(eq, var) prob.add_cnt_expr(bexpr) prob.convexify() prob.update_obj(penalty_coeff=0.5) prob.optimize() self.assertTrue(np.allclose(var.get_value(), np.array([[1.5]]))) self.assertTrue( np.allclose(prob.get_approx_value(0.5), np.array([[1.25]]))) self.assertTrue(np.allclose(prob.get_value(0.5), np.array([[1.125]])))
def test_get_value_and_get_approx_value_nonlin_constr(self): """ min x^2 -2x + 1 st. x^2 == 4 when convexified at x = 1, min x^2 -2x + 1 + penalty_coeff*|2x-5| when penalty_coeff == 0.5, solution is x = 1.5 and the value is 1.25 (according to Wolfram Alpha) approx value should be 1.25 value should be 1.125 """ quad = QuadExpr(2*np.eye(1), -2*np.ones((1,1)), np.ones((1,1))) quad_cnt = QuadExpr(2*np.eye(1), np.zeros((1,1)), np.zeros((1,1))) eq = EqExpr(quad_cnt, np.array([[4]])) model = grb.Model() prob = Prob(model) grb_var = model.addVar(lb=-1 * GRB.INFINITY, ub=GRB.INFINITY, name='x') grb_vars = np.array([[grb_var]]) var = Variable(grb_vars, np.array([[1.0]])) model.update() obj = BoundExpr(quad, var) prob.add_obj_expr(obj) bexpr = BoundExpr(eq, var) prob.add_cnt_expr(bexpr) prob.convexify() prob.update_obj(penalty_coeff=0.5) prob.optimize() self.assertTrue(np.allclose(var.get_value(), np.array([[1.5]]))) self.assertTrue(np.allclose(prob.get_approx_value(0.5), np.array([[1.25]]))) self.assertTrue(np.allclose(prob.get_value(0.5), np.array([[1.125]])))
def test_convexify_leq(self): model = grb.Model() prob = Prob(model) grb_var = model.addVar(lb=-1 * GRB.INFINITY, ub=GRB.INFINITY, name='x') grb_vars = np.array([[grb_var]]) var = Variable(grb_vars) model.update() grb_cnt = model.addConstr(grb_var, GRB.EQUAL, 0) model.optimize() var.update() e = Expr(f) eq = LEqExpr(e, np.array([[4]])) bexpr = BoundExpr(eq, var) prob.add_cnt_expr(bexpr) prob.convexify() self.assertTrue(len(prob._penalty_exprs) == 1) self.assertTrue(isinstance(prob._penalty_exprs[0].expr, HingeExpr))
def test_get_approx_value_lin_constr(self): """ min x^2 st. x == 4 when convexified, min x^2 + penalty_coeff*|x-4| when penalty_coeff == 1, solution is x = 0.5 and the value is 3.75 (according to Wolfram Alpha) when penalty_coeff == 2, solution is x = 1.0 and the value is 7.0 (according to Wolfram Alpha) """ quad = QuadExpr(2 * np.eye(1), np.zeros((1, 1)), np.zeros((1, 1))) e = Expr(f) eq = EqExpr(e, np.array([[4]])) model = grb.Model() prob = Prob(model) grb_var = model.addVar(lb=-1 * GRB.INFINITY, ub=GRB.INFINITY, name='x') grb_vars = np.array([[grb_var]]) var = Variable(grb_vars) model.update() obj = BoundExpr(quad, var) prob.add_obj_expr(obj) bexpr = BoundExpr(eq, var) prob.add_cnt_expr(bexpr) prob.optimize() # needed to set an initial value prob.convexify() prob.update_obj(penalty_coeff=1.0) prob.optimize() self.assertTrue(np.allclose(var.get_value(), np.array([[0.5]]))) self.assertTrue( np.allclose(prob.get_approx_value(1.0), np.array([[3.75]]))) prob.update_obj(penalty_coeff=2.0) prob.optimize() self.assertTrue(np.allclose(var.get_value(), np.array([[1.0]]))) self.assertTrue( np.allclose(prob.get_approx_value(2.0), np.array([[7]])))
def test_get_approx_value_lin_constr(self): """ min x^2 st. x == 4 when convexified, min x^2 + penalty_coeff*|x-4| when penalty_coeff == 1, solution is x = 0.5 and the value is 3.75 (according to Wolfram Alpha) when penalty_coeff == 2, solution is x = 1.0 and the value is 7.0 (according to Wolfram Alpha) """ quad = QuadExpr(2*np.eye(1), np.zeros((1,1)), np.zeros((1,1))) e = Expr(f) eq = EqExpr(e, np.array([[4]])) model = grb.Model() prob = Prob(model) grb_var = model.addVar(lb=-1 * GRB.INFINITY, ub=GRB.INFINITY, name='x') grb_vars = np.array([[grb_var]]) var = Variable(grb_vars) model.update() obj = BoundExpr(quad, var) prob.add_obj_expr(obj) bexpr = BoundExpr(eq, var) prob.add_cnt_expr(bexpr) prob.optimize() # needed to set an initial value prob.convexify() prob.update_obj(penalty_coeff=1.0) prob.optimize() self.assertTrue(np.allclose(var.get_value(), np.array([[0.5]]))) self.assertTrue(np.allclose(prob.get_approx_value(1.0), np.array([[3.75]]))) prob.update_obj(penalty_coeff=2.0) prob.optimize() self.assertTrue(np.allclose(var.get_value(), np.array([[1.0]]))) self.assertTrue(np.allclose(prob.get_approx_value(2.0), np.array([[7]])))