コード例 #1
0
def test_CenteredParameter_all_2d():
    """Tests probflow.parameters.CenteredParameter w/ center_by=all + 2D"""

    # Shouldn't allow >2 dims
    with pytest.raises(ValueError):
        param = CenteredParameter([5, 6, 7])

    # Create the parameter
    param = CenteredParameter([5, 6])

    # posterior_mean should return mean
    sample1 = param.posterior_mean()
    sample2 = param.posterior_mean()
    assert sample1.ndim == 2
    assert sample2.ndim == 2
    assert sample1.shape[0] == 5
    assert sample2.shape[0] == 5
    assert sample1.shape[1] == 6
    assert sample2.shape[1] == 6
    assert np.all(sample1 == sample2)

    # mean should be 0! (that's the point of a centered parameter!)
    assert is_close(np.mean(sample1), 0)

    # posterior_sample should return samples
    sample1 = param.posterior_sample()
    sample2 = param.posterior_sample()
    assert sample1.ndim == 2
    assert sample2.ndim == 2
    assert sample1.shape[0] == 5
    assert sample1.shape[1] == 6
    assert sample2.shape[0] == 5
    assert sample2.shape[1] == 6
    assert np.all(sample1 != sample2)

    # mean should be 0!
    assert is_close(np.mean(sample1), 0)

    # posterior_sample should be able to return multiple samples
    sample1 = param.posterior_sample(10)
    sample2 = param.posterior_sample(10)
    assert sample1.ndim == 3
    assert sample2.ndim == 3
    assert sample1.shape[0] == 10
    assert sample1.shape[1] == 5
    assert sample1.shape[2] == 6
    assert sample2.shape[0] == 10
    assert sample2.shape[1] == 5
    assert sample2.shape[2] == 6
    assert np.all(sample1 != sample2)

    # mean should be 0!
    assert np.all(np.abs(np.mean(sample1.reshape((10, -1)), axis=1)) < 1e-5)
コード例 #2
0
def test_CenteredParameter_row():
    """Tests probflow.parameters.CenteredParameter w/ center_by=row + 2D"""

    # Create the parameter
    param = CenteredParameter([5, 6], center_by="row")

    # posterior_mean should return mean
    sample1 = param.posterior_mean()
    sample2 = param.posterior_mean()
    assert sample1.ndim == 2
    assert sample2.ndim == 2
    assert sample1.shape[0] == 5
    assert sample2.shape[0] == 5
    assert sample1.shape[1] == 6
    assert sample2.shape[1] == 6
    assert np.all(sample1 == sample2)

    # mean of each column should be 0
    assert np.all(np.abs(np.mean(sample1, axis=1)) < 1e-5)

    # posterior_sample should return samples
    sample1 = param.posterior_sample()
    sample2 = param.posterior_sample()
    assert sample1.ndim == 2
    assert sample2.ndim == 2
    assert sample1.shape[0] == 5
    assert sample1.shape[1] == 6
    assert sample2.shape[0] == 5
    assert sample2.shape[1] == 6
    assert np.all(sample1 != sample2)

    # mean of each column should be 0
    assert np.all(np.abs(np.mean(sample1, axis=1)) < 1e-5)

    # posterior_sample should be able to return multiple samples
    sample1 = param.posterior_sample(10)
    sample2 = param.posterior_sample(10)
    assert sample1.ndim == 3
    assert sample2.ndim == 3
    assert sample1.shape[0] == 10
    assert sample1.shape[1] == 5
    assert sample1.shape[2] == 6
    assert sample2.shape[0] == 10
    assert sample2.shape[1] == 5
    assert sample2.shape[2] == 6
    assert np.all(sample1 != sample2)

    # mean of each column for each sample should be 0
    assert np.all(np.abs(np.mean(sample1, axis=2)) < 1e-5)
コード例 #3
0
def test_CenteredParameter_all_1d():
    """Tests probflow.parameters.CenteredParameter w/ center_by=all + 1D"""

    # Create the parameter
    param = CenteredParameter(5)

    # posterior_mean should return mean
    sample1 = param.posterior_mean()
    sample2 = param.posterior_mean()
    assert sample1.ndim == 2
    assert sample2.ndim == 2
    assert sample1.shape[0] == 5
    assert sample2.shape[0] == 5
    assert sample1.shape[1] == 1
    assert sample2.shape[1] == 1
    assert np.all(sample1 == sample2)

    # mean should be 0! (that's the point of a centered parameter!)
    assert is_close(np.mean(sample1), 0)

    # posterior_sample should return samples
    sample1 = param.posterior_sample()
    sample2 = param.posterior_sample()
    assert sample1.ndim == 2
    assert sample2.ndim == 2
    assert sample1.shape[0] == 5
    assert sample1.shape[1] == 1
    assert sample2.shape[0] == 5
    assert sample2.shape[1] == 1
    assert np.all(sample1 != sample2)

    # mean should be 0! (that's the point of a centered parameter!)
    assert is_close(np.mean(sample1), 0)

    # posterior_sample should be able to return multiple samples
    sample1 = param.posterior_sample(10)
    sample2 = param.posterior_sample(10)
    assert sample1.ndim == 3
    assert sample2.ndim == 3
    assert sample1.shape[0] == 10
    assert sample1.shape[1] == 5
    assert sample1.shape[2] == 1
    assert sample2.shape[0] == 10
    assert sample2.shape[1] == 5
    assert sample2.shape[2] == 1
    assert np.all(sample1 != sample2)

    # mean should be 0!
    assert np.all(np.abs(np.mean(sample1, axis=1)) < 1e-5)