def __call__(self, x): x = self.core(x) if self.batch_norm is not None: x = self.batch_norm(x) return pf.Cauchy(self.mean(x), tf.exp(self.std(x)))
def __call__(self, x): p = x @ self.w() + self.b() means = p[:, 0] stds = tf.exp(p[:, 1]) return pf.Cauchy(means, stds)
def __call__(self): return pf.Cauchy(self.mu(), self.sig())