コード例 #1
0
def find_e2(L, tol=1e-4):
    '''
        find the eigen vector that corresponds to the smallest non-zeros eigen values of the Laplacian matrix.

        Input:
            L:  the Laplacian matrix, a numpy float matrix of shape n by n. 
            tol: the tolerance threshold for eigen values, a float scalar. A very small positive value. If an eigen value is smaller than tol, then we consider the eigen value as being 0. 
        Output:
            e2:  the eigen vector corresponding to the smallest non-zero eigen value, a numpy float vector of length n. 

        For example, if the eigen values are [0.5, 0.000000000001, 2.], the first eigen vector is the answer. 
        Here we assume 0.00000001 is close enough to 0 because is smaller than the tolerance level (tol).
        For example, if the eigen values are [2., 0.0000000000001, 0.3], the last eigen vector is the answer.
        For example, if the eigen values are [0.00003, 0.000001, 0.3], the last eigen vector is the answer.
    '''

    #########################################
    ## INSERT YOUR CODE HERE
    Ep = p1.sort_eigen_pairs(p1.compute_eigen_pairs(L))
    for row in Ep:
        if row[0] >= tol:
            e2 = row[1]
            break
    #########################################
    return e2
    ''' TEST: Now you can test the correctness of your code above by typing `nosetests -v test5.py:test_find_e2' in the terminal.  '''
コード例 #2
0
def compute_P(C,k):
    '''
        Compute the projection matrix P by combining the k eigen vectors, that correspond to the top k largest eigen values of matrix C. 
        Here the projection matrix P includes all the k principle components.
        Input:
            C:  the covariance matrix, a numpy float matrix of shape p by p. 
            k:  the number of dimensions to reduce to (k should be smaller than p), an integer scalar
        Output:
            P: the projection matrix, a numpy float matrix of shape p by k. 
                For example, if we sort the eigen pairs of matrix C in descending order, and 
                the result [(v1,e1),(v2,e2),...., (vp, ep)], here v1 >= v2 >= v3 ...
                The projection matrix should be [e1^T, e2^T, ..., ek^T], here e^T represents the transpose of a row vector e (which is a column vector)
        Hint: you can re-use the functions in problem 1 to solve this problem.
    '''

    #########################################
    ## INSERT YOUR CODE HERE

    eigen = p1.compute_eigen_pairs(C)
    eigen_sorted = p1.sort_eigen_pairs(eigen, '')

    arr = np.zeros((len(eigen_sorted[0][1]), k))
    for i, x in enumerate(eigen_sorted):
        if i >= k: break
        transpose = x[1][np.newaxis].transpose()
        for j in range(len(x[1])):
            arr[j][i] = transpose[j]

    P = np.array(arr)

    #########################################
    return P

    ''' TEST: Now you can test the correctness of your code above by typing `nosetests -v test2.py:test_compute_P' in the terminal.  '''
コード例 #3
0
def compute_P(C,k):
    '''
        Compute the projection matrix P by combining the k eigen vectors, that correspond to the top k largest eigen values of matrix C. 
        Here the projection matrix P includes all the k principle components.
        Input:
            C:  the covariance matrix, a numpy float matrix of shape p by p. 
            k:  the number of dimensions to reduce to (k should be smaller than p), an integer scalar
        Output:
            P: the projection matrix, a numpy float matrix of shape p by k. 
                For example, if we sort the eigen pairs of matrix C in descending order, and 
                the result [(v1,e1),(v2,e2),...., (vp, ep)], here v1 >= v2 >= v3 ...
                The projection matrix should be [e1^T, e2^T, ..., ek^T], here e^T represents the transpose of a row vector e (which is a column vector)
        Hint: you can re-use the functions in problem 1 to solve this problem.
    '''

    #########################################
    ## INSERT YOUR CODE HERE
    Ep = p1.compute_eigen_pairs(C)
    eigenp = p1.sort_eigen_pairs(Ep, order='descending')
    klargest =[]
    pairs = []
    for i in range(k):
        klargest.append(eigenp[i])
        pairs.append(klargest[i][1])
    P = np.reshape(pairs,(k,C.shape[0]))
    P = P.T
    #########################################
    return P

    ''' TEST: Now you can test the correctness of your code above by typing `nosetests -v test2.py:test_compute_P' in the terminal.  '''
コード例 #4
0
def find_e2(L, tol=1e-4):
    '''
        find the eigen vector that corresponds to the smallest non-zeros eigen values of the Laplacian matrix.

        Input:
            L:  the Laplacian matrix, a numpy float matrix of shape n by n. 
            tol: the tolerance threshold for eigen values, a float scalar. A very small positive value. If an eigen value is smaller than tol, then we consider the eigen value as being 0. 
        Output:
            e2:  the eigen vector corresponding to the smallest non-zero eigen value, a numpy float vector of length n. 

        For example, if the eigen values are [0.5, 0.000000000001, 2.], the first eigen vector is the answer. 
        Here we assume 0.00000001 is close enough to 0 because is smaller than the tolerance level (tol).
        For example, if the eigen values are [2., 0.0000000000001, 0.3], the last eigen vector is the answer.
        For example, if the eigen values are [0.00003, 0.000001, 0.3], the last eigen vector is the answer.
        Hint: you could solve this problem using 6 lines of code.
    '''

    #########################################
    ## INSERT YOUR CODE HERE

    pairs = p1.compute_eigen_pairs(L)
    vals = np.argsort([i[0] for i in pairs])
    e2 = []
    for i in vals:
        if pairs[i][0] < tol:
            continue
        else:
            e2 = pairs[i][1]
            break

    #########################################
    return e2
    ''' TEST: Now you can test the correctness of your code above by typing `nosetests -v test5.py:test_find_e2' in the terminal.  '''
コード例 #5
0
def compute_P(C, k):
    '''
        Compute the projection matrix P by combining the k eigen vectors, that correspond to the top k largest eigen values of matrix C. 
        Here the projection matrix P includes all the k principle components.
        Input:
            C:  the covariance matrix, a numpy float matrix of shape p by p. 
            k:  the number of dimensions to reduce to (k should be smaller than p), an integer scalar
        Output:
            P: the projection matrix, a numpy float matrix of shape p by k. 
                For example, if we sort the eigen pairs of matrix C in descending order, and 
                the result [(v1,e1),(v2,e2),...., (vp, ep)], here v1 >= v2 >= v3 ...
                The projection matrix should be [e1^T, e2^T, ..., ek^T], here e^T represents the transpose of a row vector e (which is a column vector)
        Hint: you can re-use the functions in problem 1 to solve this problem.
    '''

    #########################################
    ## INSERT YOUR CODE HERE

    eigenPairs = p1.compute_eigen_pairs(C)
    sortedE = p1.sort_eigen_pairs(eigenPairs, False)
    P = (np.vstack([x[1] for x in sortedE]).T)[:, :k]

    #########################################
    return P
    ''' TEST: Now you can test the correctness of your code above by typing `nosetests s-v test2.py:test_compute_P' in the terminal.  '''
コード例 #6
0
def find_e2(L, tol=1e-4):
    '''
        find the eigen vector that corresponds to the smallest non-zeros eigen values of the Laplacian matrix.

        Input:
            L:  the Laplacian matrix, a numpy float matrix of shape n by n. 
            tol: the tolerance threshold for eigen values, a float scalar. A very small positive value. If an eigen value is smaller than tol, then we consider the eigen value as being 0. 
        Output:
            e2:  the eigen vector corresponding to the smallest non-zero eigen value, a numpy float vector of length n. 

        For example, if the eigen values are [0.5, 0.000000000001, 2.], the first eigen vector is the answer. 
        Here we assume 0.00000001 is close enough to 0 because is smaller than the tolerance level (tol).
        For example, if the eigen values are [2., 0.0000000000001, 0.3], the last eigen vector is the answer.
        For example, if the eigen values are [0.00003, 0.000001, 0.3], the last eigen vector is the answer.
        Hint: you could solve this problem using 6 lines of code.
    '''

    #########################################
    ## INSERT YOUR CODE HERE
    ep = p1.sort_eigen_pairs(p1.compute_eigen_pairs(L))

    E = np.asarray([x[1] for x in ep])
    v = np.asarray([x[0] for x in ep])

    val = 0
    while tol < 1:
        tol *= 10
        val += 1

    v = np.around(v, val)
    minimum = float('inf')
    index = float('nan')
    for i in range(len(v)):
        if (0 < v[i] < minimum):
            minimum = v[i]
            index = i

    e2 = E[:, index]

    #########################################
    return e2
    ''' TEST: Now you can test the correctness of your code above by typing `nosetests -v test5.py:test_find_e2' in the terminal.  '''