コード例 #1
0
def main():
    import problem_unittests as tests

    tests.test_model_inputs(model_inputs)
    tests.test_discriminator(discriminator, tf)
    tests.test_generator(generator, tf)
    tests.test_model_loss(model_loss)
    tests.test_model_opt(model_opt, tf)
コード例 #2
0
def run_tests():

    import problem_unittests as t

    t.test_decoding_layer(decoding_layer)
    t.test_decoding_layer_infer(decoding_layer_infer)
    t.test_decoding_layer_train(decoding_layer_train)
    t.test_encoding_layer(encoding_layer)
    t.test_model_inputs(model_inputs)
    t.test_process_encoding_input(process_decoder_input)
    t.test_sentence_to_seq(sentence_to_seq)
    t.test_seq2seq_model(seq2seq_model)
    t.test_text_to_ids(text_to_ids)
コード例 #3
0
def run_all_tests():
    tests.test_text_to_ids(text_to_ids)

    check_tensorflow_gpu()
    tests.test_model_inputs(model_inputs)

    tests.test_process_encoding_input(process_decoder_input)

    from imp import reload
    reload(tests)
    tests.test_encoding_layer(encoding_layer)

    tests.test_decoding_layer_train(decoding_layer_train)
    tests.test_decoding_layer_infer(decoding_layer_infer)
    tests.test_decoding_layer(decoding_layer)
    tests.test_seq2seq_model(seq2seq_model)

    tests.test_sentence_to_seq(sentence_to_seq)
コード例 #4
0
    :param image_channels: The number of image channels
    :param z_dim: The dimension of Z
    :return: Tuple of (tensor of real input images, tensor of z data, learning rate)
    """
    # TODO: Implement Function
    input_images = tf.placeholder(
        tf.float32, (None, image_width, image_height, image_channels))
    z_data = tf.placeholder(tf.float32, (None, z_dim))
    learning_rate = tf.placeholder(tf.float32)
    return input_images, z_data, learning_rate


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_inputs(model_inputs)

# ### 辨别器(Discriminator)
# 部署 `discriminator` 函数创建辨别器神经网络以辨别 `images`。该函数应能够重复使用神经网络中的各种变量。 在 [`tf.variable_scope`](https://www.tensorflow.org/api_docs/python/tf/variable_scope) 中使用 "discriminator" 的变量空间名来重复使用该函数中的变量。
#
# 该函数应返回形如 (tensor output of the discriminator, tensor logits of the discriminator) 的元组。

# In[6]:


def discriminator(images, reuse=False):
    """
    Create the discriminator network
    :param image: Tensor of input image(s)
    :param reuse: Boolean if the weights should be reused
    :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)
コード例 #5
0
    :param image_height: The input image height
    :param image_channels: The number of image channels
    :param z_dim: The dimension of Z
    :return: Tuple of (tensor of real input images, tensor of z data, learning rate)
    """
    # TODO: Implement Function
    real_inputs = tf.placeholder(tf.float32,(None,image_width,image_height,image_channels),name="inputs_real")
    inputs_z = tf.placeholder(tf.float32,(None,z_dim),name="inputs_z")
    learning_rate = tf.placeholder(tf.float32,name="learning_rate")
    return real_inputs, inputs_z, learning_rate


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_inputs(model_inputs)


# ### 辨别器(Discriminator)
# 部署 `discriminator` 函数创建辨别器神经网络以辨别 `images`。该函数应能够重复使用神经网络中的各种变量。 在 [`tf.variable_scope`](https://www.tensorflow.org/api_docs/python/tf/variable_scope) 中使用 "discriminator" 的变量空间名来重复使用该函数中的变量。 
# 
# 该函数应返回形如 (tensor output of the discriminator, tensor logits of the discriminator) 的元组。

# In[119]:

def discriminator(images, reuse=False):
    """
    Create the discriminator network
    :param image: Tensor of input image(s)
    :param reuse: Boolean if the weights should be reused
    :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)
コード例 #6
0
ファイル: gan.py プロジェクト: wyllmein2000/dlnd-project-5
 def unit_test(self):
     tests.test_model_inputs(self.model_inputs)
     tests.test_discriminator(self.discriminator, tf)
     tests.test_generator(self.generator, tf)
     tests.test_model_loss(self.model_loss)
     tests.test_model_opt(self.model_opt, tf)