def test_problems(): """Test problems for visualizations.""" # Unlike the training problem sets, these test problems are made up of # length-5 tuples. The final items in the tuple are the name of the problem # and the initialization random_seed for testing consistency. tp = [ (_Spec(pg.Quadratic, (20, ), {"random_seed": 1234}), None, None, "quad_problem", 5678), (_Spec(pg.Quadratic, (20, ), { "noise_stdev": 1.0, "random_seed": 1234 }), None, None, "quad_problem_noise", 5678), (_Spec(pg.Rosenbrock, (), {"random_seed": 1234}), None, None, "rosenbrock", 5678), (_Spec(pg.Rosenbrock, (), { "random_seed": 1234, "noise_stdev": 1.0 }), None, None, "rosenbrock_noise", 5678), (_Spec(pg.SoftmaxRegression, (10, 2), {}), datasets.random(10, 10000, random_seed=1234), 100, "softmax", 5678), (_Spec(pg.SoftmaxRegression, (10, 2), {"noise_stdev": 1.0}), datasets.random(10, 10000, random_seed=1234), 100, "softmax_noise", 5678), (_Spec(pg.FullyConnected, (10, 2), {}), datasets.random(10, 10000, random_seed=1234), 100, "mlp_small", _test_problem_mlp_scaled_init_small()), (_Spec(pg.FullyConnected, (20, 10), {}), datasets.random(20, 10000, n_classes=10, random_seed=1234), 100, "mlp_large", _test_problem_mlp_scaled_init_large()), (_Spec(pg.FullyConnected, (784, 10), { "hidden_sizes": (64, ), "activation": tf.nn.sigmoid }), datasets.mnist(), 64, "mlp_mnist_sigmoid", _test_problem_mlp_scaled_init_mnist()), (_Spec(pg.FullyConnected, (784, 10), { "hidden_sizes": (64, ), "activation": tf.nn.relu }), datasets.mnist(), 64, "mlp_mnist_relu", _test_problem_mlp_scaled_init_mnist()), (_Spec(pg.ConvNet, ((1, 28, 28), 10, [(3, 3, 8), (5, 5, 8)]), {"activation": tf.nn.sigmoid}), datasets.mnist(), 64, "convnet_mnist_sigmoid", None), (_Spec(pg.ConvNet, ((1, 28, 28), 10, [(3, 3, 8), (5, 5, 8)]), {"activation": tf.nn.relu}), datasets.mnist(), 64, "convnet_mnist_relu", None), ] return tp
def mnist_conv_problems(): return [ # (_Spec(pg.ConvNet, ((1, 28, 28), 10, [(3, 3, 8), (5, 5, 8)]), # {"activation": tf.nn.sigmoid}), datasets.mnist(train=True), 64), (_Spec(pg.ConvNet, ((1, 28, 28), 10, [(3, 3, 8), (5, 5, 8)]), {"activation": tf.nn.relu}), datasets.mnist(train=True), 64) ]
def test_mnist_conv_orig_problems(): return [(_Spec(pg.ConvNetOrig, ((1, 28, 28), 10, [(3, 3, 8), (5, 5, 8)]), {"activation": tf.nn.relu}), datasets.mnist(train=False), 64)]
def test_mnist_conv_problems(): return [(_Spec(pg.ConvNet, ((1, 28, 28), 10, [(3, 3, 16, 1), (5, 5, 32, 1)]), { "activation": tf.nn.relu, "affine_size": 512 }), datasets.mnist(train=False), 128)]
def test_mnist_mlp_deeper_problems(): tp = [(_Spec(pg.FullyConnected, (784, 10), { "hidden_sizes": (20, 20), "activation": tf.nn.sigmoid }), datasets.mnist(train=False), 128)] return tp