def main(): args = process_args() os.environ["CUDA_VISIBLE_DEVICES"] = args.cuda if args.seed == -1: RANDOMSEED = None else: RANDOMSEED = args.seed torch.manual_seed(RANDOMSEED) torch.cuda.manual_seed(RANDOMSEED) IMP_WEIGHT = args.imp_weight if not IMP_WEIGHT: imp = torch.ones(args.class_num - 1, dtype=torch.float) elif IMP_WEIGHT == 1: pass else: raise ValueError('Incorrect importance weight parameter.') imp = imp.cuda() embedding = 'random' torch.backends.cudnn.deterministic = True config = Config(args, embedding, 'OR') start_time = time.time() print("Loading data...") vocab, train_data, test_data = build_dataset(config, args.word) train_iter = build_iterator(train_data, config, doubly_flag=False) # train_iter = buil_random_iterator(train_data,config) test_iter = build_test_iterator(test_data, config) print("Time used: ", get_time_dif(start_time)) config.n_vocab = len(vocab) model = OR(config).cuda() init_model(model) print("start training...") train_or(config, model, train_iter, test_iter, imp)
def main(): args = process_args() os.environ["CUDA_VISIBLE_DEVICES"] = args.cuda if args.seed == -1: RANDOMSEED = None else: RANDOMSEED = args.seed torch.manual_seed(RANDOMSEED) torch.cuda.manual_seed(RANDOMSEED) embedding = 'random' torch.backends.cudnn.deterministic = True config = Config(args, embedding, 'POR') start_time = time.time() print("Loading data...") vocab, train_data, test_data = build_adaptive_dataset(config, args.word) train_iter2 = build_iterator(train_data, config, doubly_flag=False) test_iter = build_test_iterator(test_data, config) print("Time used: ", get_time_dif(start_time)) config.n_vocab = len(vocab) model = POR(config).cuda() init_model(model) print("start training...") train_por(config, model, train_iter, train_iter2, test_iter)