def test_calibrate_T_function(self): self.actualSetup('stokesI', 'stokesI', f=[100.0]) # Prepare the corrupted visibility data_models gt = create_gaintable_from_blockvisibility(self.vis) log.info("Created gain table: %s" % (gaintable_summary(gt))) gt = simulate_gaintable(gt, phase_error=10.0, amplitude_error=0.0) original = copy_visibility(self.vis) self.vis = apply_gaintable(self.vis, gt, vis_slices=None) # Now get the control dictionary and calibrate controls = create_calibration_controls() controls['T']['first_selfcal'] = 0 calibrated_vis, gaintables = calibrate_function( self.vis, original, calibration_context='T', controls=controls) residual = numpy.max(gaintables['T'].residual) assert residual < 1e-8, "Max T residual = %s" % (residual)
def solve_and_apply(vis, modelvis=None): return calibrate_function(vis, modelvis, calibration_context=calibration_context, **kwargs)[0]
def ical_serial(block_vis: BlockVisibility, model: Image, components=None, context='2d', controls=None, **kwargs): """ Post observation image, deconvolve, and self-calibrate :param vis: :param model: Model image :param components: Initial components :param context: Imaging context :param controls: calibration controls dictionary :return: model, residual, restored """ nmajor = get_parameter(kwargs, 'nmajor', 5) log.info("ical_serial: Performing %d major cycles" % nmajor) do_selfcal = get_parameter(kwargs, "do_selfcal", False) if controls is None: controls = create_calibration_controls(**kwargs) # The model is added to each major cycle and then the visibilities are # calculated from the full model vis = convert_blockvisibility_to_visibility(block_vis) block_vispred = copy_visibility(block_vis, zero=True) vispred = convert_blockvisibility_to_visibility(block_vispred) vispred.data['vis'][...] = 0.0 visres = copy_visibility(vispred) vispred = predict_serial(vispred, model, context=context, **kwargs) if components is not None: vispred = predict_skycomponent_visibility(vispred, components) if do_selfcal: vis, gaintables = calibrate_function(vis, vispred, 'TGB', controls, iteration=-1) visres.data['vis'] = vis.data['vis'] - vispred.data['vis'] dirty, sumwt = invert_serial(visres, model, context=context, **kwargs) log.info("Maximum in residual image is %.6f" % (numpy.max(numpy.abs(dirty.data)))) psf, sumwt = invert_serial(visres, model, dopsf=True, context=context, **kwargs) thresh = get_parameter(kwargs, "threshold", 0.0) for i in range(nmajor): log.info("ical_serial: Start of major cycle %d of %d" % (i, nmajor)) cc, res = deconvolve_cube(dirty, psf, **kwargs) model.data += cc.data vispred.data['vis'][...] = 0.0 vispred = predict_serial(vispred, model, context=context, **kwargs) if do_selfcal: vis, gaintables = calibrate_function(vis, vispred, 'TGB', controls, iteration=i) visres.data['vis'] = vis.data['vis'] - vispred.data['vis'] dirty, sumwt = invert_serial(visres, model, context=context, **kwargs) log.info("Maximum in residual image is %s" % (numpy.max(numpy.abs(dirty.data)))) if numpy.abs(dirty.data).max() < 1.1 * thresh: log.info("ical_serial: Reached stopping threshold %.6f Jy" % thresh) break log.info("ical_serial: End of major cycle") log.info("ical_serial: End of major cycles") restored = restore_cube(model, psf, dirty, **kwargs) return model, dirty, restored