def predict_vislist_wrapper(conf):
    """Wrapper for prediction

    :param conf: Configuration from JSON file
    :return:
    """
    vis_list = buffer_data_model_to_memory(conf["buffer"],
                                           conf['inputs']['vis_list'])
    skymodel = buffer_data_model_to_memory(conf["buffer"],
                                           conf['inputs']['skymodel'])

    flux_limit = conf['primary_beam']['flux_limit']

    if conf["primary_beam"]["apply"]:

        def apply_pb_image(vt, model):
            telescope = vt.configuration.name
            pb = create_pb(model, telescope)
            model.data *= pb.data
            return model

        def apply_pb_comp(vt, model, comp):
            telescope = vt.configuration.name
            pb = create_pb(model, telescope)
            return apply_beam_to_skycomponent(comp, pb, flux_limit)

        image_list = [
            arlexecute.execute(apply_pb_image, nout=1)(v, skymodel.images[i])
            for i, v in enumerate(vis_list)
        ]
        if len(skymodel.components) > 1:
            component_list = [
                arlexecute.execute(apply_pb_comp,
                                   nout=1)(v, skymodel.images[i],
                                           skymodel.components)
                for i, v in enumerate(vis_list)
            ]
        else:
            component_list = []
    else:
        image_list = [skymodel.images[0] for v in vis_list]
        component_list = skymodel.components

    future_vis_list = arlexecute.scatter(vis_list)
    predicted_vis_list = [
        arlexecute.execute(predict_skycomponent_visibility)(v, component_list)
        for v in future_vis_list
    ]
    predicted_vis_list = predict_component(
        predicted_vis_list,
        image_list,
        context=conf['imaging']['context'],
        vis_slices=conf['imaging']['vis_slices'])

    return arlexecute.execute(memory_data_model_to_buffer)(
        predicted_vis_list, conf["buffer"], conf["outputs"]["vis_list"])
def continuum_imaging_wrapper(conf):
    """Wrap continuum imaging pipeline
    
    :param conf:
    :return:
    """
    vis_list = buffer_data_model_to_memory(conf["buffer"],
                                           conf['inputs']['vis_list'])

    cellsize = json_to_quantity(conf["image"]["cellsize"]).to("rad").value
    npixel = conf["image"]["npixel"]
    pol_frame = PolarisationFrame(conf["image"]["polarisation_frame"])

    model_imagelist = [
        arlexecute.execute(create_image_from_visibility)(
            v, npixel=npixel, cellsize=cellsize, polarisation_frame=pol_frame)
        for v in vis_list
    ]

    future_vis_list = arlexecute.scatter(vis_list)

    result = continuum_imaging_component(
        vis_list=future_vis_list,
        model_imagelist=model_imagelist,
        context=conf["imaging"]["context"],
        scales=conf["deconvolution"]["scales"],
        algorithm=conf["deconvolution"]["algorithm"],
        nmoment=conf["deconvolution"]["nmoment"],
        niter=conf["deconvolution"]["niter"],
        fractional_threshold=conf["deconvolution"]["fractional_threshold"],
        threshold=conf["deconvolution"]["threshold"],
        nmajor=conf["deconvolution"]["nmajor"],
        gain=conf["deconvolution"]["gain"],
        deconvolve_facets=conf["deconvolution"]["deconvolve_facets"],
        deconvolve_overlap=conf["deconvolution"]["deconvolve_overlap"],
        deconvolve_taper=conf["deconvolution"]["deconvolve_taper"],
        vis_slices=conf["imaging"]["vis_slices"],
        psf_support=conf["deconvolution"]["psf_support"])

    def output_images(result):
        deconvolved = image_gather_channels(result[0])
        residual = image_gather_channels(remove_sumwt(result[1]))
        restored = image_gather_channels(result[2])

        memory_data_model_to_buffer(deconvolved, conf["buffer"],
                                    conf['outputs']['deconvolved'])
        memory_data_model_to_buffer(restored, conf["buffer"],
                                    conf['outputs']['restored'])
        memory_data_model_to_buffer(residual, conf["buffer"],
                                    conf['outputs']['residual'])

        return result

    return arlexecute.execute(output_images)(result)
def create_vislist_wrapper(conf):
    """ Create an empty vislist
    
    :param conf: Configuration from JSON file
    :return:
    """
    configuration = conf['create_vislist']['configuration']
    rmax = conf['create_vislist']['rmax']
    phasecentre = json_to_skycoord(conf['create_vislist']['phasecentre'])
    frequency = json_to_linspace(conf['create_vislist']['frequency'])
    if conf['create_vislist']['frequency']['steps'] > 1:
        channel_bandwidth = numpy.array(
            conf['create_vislist']['frequency']['steps'] *
            [frequency[1] - frequency[0]])
    else:
        channel_bandwidth = numpy.array(
            conf['create_vislist']['frequency']['start'])

    times = json_to_linspace(conf['create_vislist']['times'])

    vis_list = simulate_component(configuration,
                                  rmax=rmax,
                                  frequency=frequency,
                                  channel_bandwidth=channel_bandwidth,
                                  times=times,
                                  phasecentre=phasecentre,
                                  order='frequency')

    return arlexecute.execute(memory_data_model_to_buffer)(
        vis_list, conf["buffer"], conf["outputs"]["vis_list"])
コード例 #4
0
    def test_useFunction(self):
        def square(x):
            return x**2

        arlexecute.set_client(use_dask=False)
        graph = arlexecute.execute(square)(numpy.arange(10))
        assert (arlexecute.compute(graph) == numpy.array(
            [0, 1, 4, 9, 16, 25, 36, 49, 64, 81])).all()
        arlexecute.close()
コード例 #5
0
    def test_useDaskSync(self):
        def square(x):
            return x**2

        arlexecute.set_client(use_dask=True)
        graph = arlexecute.execute(square)(numpy.arange(10))
        result = arlexecute.compute(graph, sync=True)
        assert (result == numpy.array([0, 1, 4, 9, 16, 25, 36, 49, 64,
                                       81])).all()
        arlexecute.close()
def corrupt_vislist_wrapper(conf):
    """Wrapper for corruption

    :param conf:
    :return:
    """
    vis_list = buffer_data_model_to_memory(conf["buffer"],
                                           conf['inputs']['vis_list'])
    phase_error = json_to_quantity(
        conf['corrupt_vislist']['phase_error']).to('rad').value

    corrupted_vislist = corrupt_component(
        vis_list,
        phase_error=phase_error,
        amplitude_error=conf['corrupt_vislist']['amplitude_error'])

    return arlexecute.execute(memory_data_model_to_buffer)(
        corrupted_vislist, conf["buffer"], conf['outputs']['vis_list'])
コード例 #7
0
    def setUp(self):

        arlexecute.set_client(use_dask=False)

        from data_models.parameters import arl_path
        self.dir = arl_path('test_results')
        self.lowcore = create_named_configuration('LOWBD2-CORE')
        self.times = numpy.linspace(-3, +3, 13) * (numpy.pi / 12.0)

        self.frequency = numpy.array([1e8])
        self.channel_bandwidth = numpy.array([1e7])

        # Define the component and give it some polarisation and spectral behaviour
        f = numpy.array([100.0])
        self.flux = numpy.array([f])

        self.phasecentre = SkyCoord(ra=+15.0 * u.deg,
                                    dec=-35.0 * u.deg,
                                    frame='icrs',
                                    equinox='J2000')
        self.compabsdirection = SkyCoord(ra=17.0 * u.deg,
                                         dec=-36.5 * u.deg,
                                         frame='icrs',
                                         equinox='J2000')

        self.comp = create_skycomponent(
            direction=self.compabsdirection,
            flux=self.flux,
            frequency=self.frequency,
            polarisation_frame=PolarisationFrame('stokesI'))
        self.image = create_test_image(
            frequency=self.frequency,
            phasecentre=self.phasecentre,
            cellsize=0.001,
            polarisation_frame=PolarisationFrame('stokesI'))
        self.image.data[self.image.data < 0.0] = 0.0

        self.image_graph = arlexecute.execute(create_test_image)(
            frequency=self.frequency,
            phasecentre=self.phasecentre,
            cellsize=0.001,
            polarisation_frame=PolarisationFrame('stokesI'))
コード例 #8
0
    def test_calskymodel_solve_component(self):

        self.actualSetup(doiso=True)

        self.skymodel_list = [
            arlexecute.execute(SkyModel, nout=1)(components=[cm])
            for cm in self.components
        ]

        calskymodel_list = calskymodel_solve_component(
            self.vis, skymodel_list=self.skymodel_list, niter=30, gain=0.25)
        skymodel, residual_vis = arlexecute.compute(calskymodel_list,
                                                    sync=True)

        residual_vis = convert_blockvisibility_to_visibility(residual_vis)
        residual_vis, _, _ = weight_visibility(residual_vis, self.beam)
        dirty, sumwt = invert_function(residual_vis, self.beam, context='2d')
        export_image_to_fits(
            dirty, "%s/test_calskymodel-%s-final-iso-residual.fits" %
            (self.dir, arlexecute.type()))

        qa = qa_image(dirty)
        assert qa.data['rms'] < 3.2e-3, qa
コード例 #9
0
    arlexecute.set_client(get_dask_Client())
    arlexecute.run(init_logging)

    import pickle

    # Load data from previous simulation
    vislist = import_blockvisibility_from_hdf5('gleam_simulation_vislist.hdf')

    print(vislist[0])

    cellsize = 0.001
    npixel = 1024
    pol_frame = PolarisationFrame("stokesI")

    model_list = [
        arlexecute.execute(create_image_from_visibility)(
            v, npixel=1024, cellsize=cellsize, polarisation_frame=pol_frame)
        for v in vislist
    ]

    controls = create_calibration_controls()

    controls['T']['first_selfcal'] = 1
    controls['G']['first_selfcal'] = 3
    controls['B']['first_selfcal'] = 4

    controls['T']['timescale'] = 'auto'
    controls['G']['timescale'] = 'auto'
    controls['B']['timescale'] = 1e5

    pp.pprint(controls)
コード例 #10
0
    def actualSetUp(self,
                    add_errors=False,
                    freqwin=1,
                    block=False,
                    dospectral=True,
                    dopol=False,
                    zerow=False):

        arlexecute.set_client(use_dask=True)

        self.npixel = 256
        self.low = create_named_configuration('LOWBD2', rmax=750.0)
        self.freqwin = freqwin
        self.vis_list = list()
        self.ntimes = 5
        self.times = numpy.linspace(-3.0, +3.0, self.ntimes) * numpy.pi / 12.0

        if freqwin > 1:
            self.frequency = numpy.linspace(0.8e8, 1.2e8, self.freqwin)
            self.channelwidth = numpy.array(
                freqwin * [self.frequency[1] - self.frequency[0]])
        else:
            self.frequency = numpy.array([0.8e8])
            self.channelwidth = numpy.array([1e6])

        if dopol:
            self.vis_pol = PolarisationFrame('linear')
            self.image_pol = PolarisationFrame('stokesIQUV')
            f = numpy.array([100.0, 20.0, -10.0, 1.0])
        else:
            self.vis_pol = PolarisationFrame('stokesI')
            self.image_pol = PolarisationFrame('stokesI')
            f = numpy.array([100.0])

        if dospectral:
            flux = numpy.array(
                [f * numpy.power(freq / 1e8, -0.7) for freq in self.frequency])
        else:
            flux = numpy.array([f])

        self.phasecentre = SkyCoord(ra=+180.0 * u.deg,
                                    dec=-60.0 * u.deg,
                                    frame='icrs',
                                    equinox='J2000')
        self.vis_list = [
            arlexecute.execute(ingest_unittest_visibility)(
                self.low, [self.frequency[freqwin]],
                [self.channelwidth[freqwin]],
                self.times,
                self.vis_pol,
                self.phasecentre,
                block=block,
                zerow=zerow) for freqwin, _ in enumerate(self.frequency)
        ]

        self.model_graph = [
            arlexecute.execute(create_unittest_model,
                               nout=freqwin)(self.vis_list[freqwin],
                                             self.image_pol,
                                             npixel=self.npixel)
            for freqwin, _ in enumerate(self.frequency)
        ]

        self.components_graph = [
            arlexecute.execute(create_unittest_components)(
                self.model_graph[freqwin], flux[freqwin, :][numpy.newaxis, :])
            for freqwin, _ in enumerate(self.frequency)
        ]

        self.model_graph = [
            arlexecute.execute(insert_skycomponent,
                               nout=1)(self.model_graph[freqwin],
                                       self.components_graph[freqwin])
            for freqwin, _ in enumerate(self.frequency)
        ]

        self.vis_list = [
            arlexecute.execute(predict_skycomponent_visibility)(
                self.vis_list[freqwin], self.components_graph[freqwin])
            for freqwin, _ in enumerate(self.frequency)
        ]

        # Calculate the model convolved with a Gaussian.
        self.model = arlexecute.compute(self.model_graph[0], sync=True)

        self.cmodel = smooth_image(self.model)
        export_image_to_fits(self.model,
                             '%s/test_imaging_model.fits' % self.dir)
        export_image_to_fits(self.cmodel,
                             '%s/test_imaging_cmodel.fits' % self.dir)

        if add_errors and block:
            self.vis_list = [
                arlexecute.execute(insert_unittest_errors)(self.vis_list[i])
                for i, _ in enumerate(self.frequency)
            ]

        self.vis = arlexecute.compute(self.vis_list[0], sync=True)

        self.components = arlexecute.compute(self.components_graph[0],
                                             sync=True)
    def actualSetUp(self,
                    add_errors=False,
                    freqwin=5,
                    block=False,
                    dospectral=True,
                    dopol=False,
                    amp_errors=None,
                    phase_errors=None,
                    zerow=True):

        if amp_errors is None:
            amp_errors = {'T': 0.0, 'G': 0.01, 'B': 0.01}
        if phase_errors is None:
            phase_errors = {'T': 1.0, 'G': 0.1, 'B': 0.01}

        self.npixel = 512
        self.low = create_named_configuration('LOWBD2', rmax=750.0)
        self.freqwin = freqwin
        self.vis_list = list()
        self.ntimes = 5
        self.times = numpy.linspace(-3.0, +3.0, self.ntimes) * numpy.pi / 12.0
        self.frequency = numpy.linspace(0.8e8, 1.2e8, self.freqwin)

        if freqwin > 1:
            self.channelwidth = numpy.array(
                freqwin * [self.frequency[1] - self.frequency[0]])
        else:
            self.channelwidth = numpy.array([1e6])

        if dopol:
            self.vis_pol = PolarisationFrame('linear')
            self.image_pol = PolarisationFrame('stokesIQUV')
            f = numpy.array([100.0, 20.0, -10.0, 1.0])
        else:
            self.vis_pol = PolarisationFrame('stokesI')
            self.image_pol = PolarisationFrame('stokesI')
            f = numpy.array([100.0])

        if dospectral:
            flux = numpy.array(
                [f * numpy.power(freq / 1e8, -0.7) for freq in self.frequency])
        else:
            flux = numpy.array([f])

        self.phasecentre = SkyCoord(ra=+180.0 * u.deg,
                                    dec=-60.0 * u.deg,
                                    frame='icrs',
                                    equinox='J2000')
        self.vis_list = [
            arlexecute.execute(ingest_unittest_visibility)(
                self.low, [self.frequency[i]], [self.channelwidth[i]],
                self.times,
                self.vis_pol,
                self.phasecentre,
                block=block,
                zerow=zerow) for i, _ in enumerate(self.frequency)
        ]

        self.model_imagelist = [
            arlexecute.execute(create_unittest_model,
                               nout=freqwin)(self.vis_list[0],
                                             self.image_pol,
                                             npixel=self.npixel)
            for i, _ in enumerate(self.frequency)
        ]

        self.components_list = [
            arlexecute.execute(create_unittest_components)(
                self.model_imagelist[i], flux[i, :][numpy.newaxis, :])
            for i, _ in enumerate(self.frequency)
        ]

        # Apply the LOW primary beam and insert into model
        self.model_imagelist = [
            arlexecute.execute(insert_skycomponent,
                               nout=1)(self.model_imagelist[freqwin],
                                       self.components_list[freqwin])
            for freqwin, _ in enumerate(self.frequency)
        ]

        self.vis_list = [
            arlexecute.execute(predict_skycomponent_visibility)(
                self.vis_list[freqwin], self.components_list[freqwin])
            for freqwin, _ in enumerate(self.frequency)
        ]

        # Calculate the model convolved with a Gaussian.
        self.model_imagelist = arlexecute.compute(self.model_imagelist,
                                                  sync=True)
        model = self.model_imagelist[0]
        self.cmodel = smooth_image(model)
        export_image_to_fits(model,
                             '%s/test_imaging_delayed_model.fits' % self.dir)
        export_image_to_fits(self.cmodel,
                             '%s/test_imaging_delayed_cmodel.fits' % self.dir)

        if add_errors and block:
            self.vis_list = [
                arlexecute.execute(insert_unittest_errors)(
                    self.vis_list[i],
                    amp_errors=amp_errors,
                    phase_errors=phase_errors)
                for i, _ in enumerate(self.frequency)
            ]

        self.vis_list = arlexecute.compute(self.vis_list, sync=True)

        self.vis_list = arlexecute.scatter(self.vis_list)
        self.model_imagelist = arlexecute.scatter(self.model_imagelist)
def create_skymodel_wrapper(conf):
    """ Wrapper to create skymodel
    
    :param conf: Configuration from JSON file
    :return:
    """

    cellsize = json_to_quantity(conf["image"]["cellsize"]).to("rad").value
    npixel = conf["image"]["npixel"]
    pol_frame = PolarisationFrame(conf["image"]["polarisation_frame"])
    phasecentre = json_to_skycoord(conf['image']['phasecentre'])
    frequency = json_to_linspace(conf['image']['frequency'])
    if conf['image']['frequency']['steps'] > 1:
        channel_bandwidth = numpy.array(conf['image']['frequency']['steps'] *
                                        [frequency[1] - frequency[0]])
    else:
        channel_bandwidth = numpy.array(conf['image']['frequency']['start'])

    flux_limit = json_to_quantity(
        conf['create_skymodel']['flux_limit']).to("Jy").value
    radius = json_to_quantity(
        conf['create_skymodel']['radius']).to('rad').value
    kind = conf['create_skymodel']['kind']

    models = [
        arlexecute.execute(create_image)(
            npixel=npixel,
            frequency=[frequency[f]],
            channel_bandwidth=[channel_bandwidth[f]],
            cellsize=cellsize,
            phasecentre=phasecentre,
            polarisation_frame=pol_frame) for f, freq in enumerate(frequency)
    ]

    catalog = conf['create_skymodel']["catalog"]
    if catalog == "gleam":
        components = arlexecute.execute(
            create_low_test_skycomponents_from_gleam)(
                phasecentre=phasecentre,
                polarisation_frame=pol_frame,
                flux_limit=flux_limit,
                frequency=frequency,
                kind=kind,
                radius=radius)
        if conf['create_skymodel']["fill_image"]:
            models = [
                arlexecute.execute(insert_skycomponent)(m, components)
                for m in models
            ]

    elif catalog == "empty":
        components = []
    else:
        raise RuntimeError("Catalog %s is not supported" % catalog)

    def output_skymodel(model_list, comp_list):
        if conf['create_skymodel']["fill_image"]:
            skymodel = SkyModel(images=model_list, components=[])
        else:
            skymodel = SkyModel(images=[], components=comp_list)

        return memory_data_model_to_buffer(skymodel, conf["buffer"],
                                           conf["outputs"]["skymodel"])

    return arlexecute.execute(output_skymodel)(models, components)
コード例 #13
0
 
 advice_high = advise_wide_field(vis_list[-1], guard_band_image=8.0, delA=0.02,
                                 wprojection_planes=wprojection_planes)
 
 vis_slices = advice_low['vis_slices']
 npixel = advice_high['npixels2']
 cellsize = min(advice_low['cellsize'], advice_high['cellsize'])
 
 # Now make a graph to fill with a model drawn from GLEAM
 
 # In[ ]:
 
 gleam_model = [arlexecute.execute(create_low_test_image_from_gleam)(npixel=npixel,
                                                                     frequency=[frequency[f]],
                                                                     channel_bandwidth=[channel_bandwidth[f]],
                                                                     cellsize=cellsize,
                                                                     phasecentre=phasecentre,
                                                                     polarisation_frame=PolarisationFrame("stokesI"),
                                                                     flux_limit=1.0,
                                                                     applybeam=True)
                for f, freq in enumerate(frequency)]
 log.info('About to make GLEAM model')
 gleam_model = arlexecute.compute(gleam_model, sync=True)
 gleam_skymodel = SkyModel(images=gleam_model)
 export_skymodel_to_hdf5(gleam_skymodel, 'gleam_simulation_skymodel.hdf')
 future_gleam_model = arlexecute.scatter(gleam_model)
 
 # In[ ]:
 
 log.info('About to run predict to get predicted visibility')
 future_vis_graph = arlexecute.scatter(vis_list)
 predicted_vislist = predict_component(future_vis_graph, gleam_model, context='wstack', vis_slices=vis_slices)