コード例 #1
0
class PIDOrientLineDirective(AbstractDroneDirective):

    # orientation:
    #   > either "VERTICAL" or "PERPENDICULAR";
    #     algorithm will orient drone vertically or perpendicular to the line respectively
    # lineColor:
    #   > color of the line to orient to
    # platformColor:
    #   > color of the platform to orient to
    # settingsPath:
    #   > Path for getting PID settings
    # hoverAltitude:
    #   > how high to hover over the platform
    def __init__(self, orientation, lineColor, platformColor, settingsPath):

        if orientation != "PARALLEL" and orientation != "PERPENDICULAR":
            raise Exception("Orientation not recognized.")
        else:
            self.orientation = orientation
        self.lineColor = lineColor
        self.platformColor = platformColor

        self.processVideo = ProcessVideo()
        P, I, D = self.GetSettings(settingsPath)
        self.pid = PIDController(360, 640, P, I, D)
        self.moveTime = 0.2
        self.waitTime = 0.1

    def GetSettings(self, settingsPath):
        # read a text file as a list of lines
        # find the last line, change to a file you have
        fileHandle = open(settingsPath, 'r')
        last = fileHandle.readlines()
        fileHandle.close()

        last = str(last[len(last) - 1]).split()
        p, i, d = [float(x) for x in (last)]

        return p, i, d

    # Given the image and navdata of the drone, returns the following in order:
    #
    # A directive status int:
    #   0 if algorithm is still running and drone isn't oriented yet
    #   1 if algorithm is finished and drone is now oriented
    #
    # A tuple of (xspeed, yspeed, yawspeed, zspeed):
    #   indicating the next instructions to fly the drone
    #
    # An image reflecting what is being done as part of the algorithm
    def RetrieveNextInstruction(self, image, navdata):

        segLineImage = self.processVideo.DetectColor(image, self.lineColor)

        cx, cy = navdata["center"][1][0], navdata["center"][1][1]
        altitude = navdata["SVCLAltitude"][1]

        #draws center of circle on image
        self.processVideo.DrawCircle(segLineImage, (cx, cy))

        self.pid.UpdateDeltaTime()
        self.pid.UpdateError(cx, cy, altitude)
        self.pid.SetPIDTerms()
        xspeed, yspeed = self.pid.GetPIDValues()

        if self.orientation == "PARALLEL":

            angle = self.processVideo.ShowLine(segLineImage,
                                               lowerAngleBound=0,
                                               upperAngleBound=70,
                                               secondBounds=(110, 180),
                                               thresh=35)
            yawspeed = self.processVideo.ObjectOrientation(segLineImage,
                                                           angle,
                                                           5,
                                                           yawspeed=0.5)
            xWindowSize = 50
            yWindowSize = 50

        elif self.orientation == "PERPENDICULAR":

            angle = self.processVideo.ShowLine(segLineImage,
                                               lowerAngleBound=30,
                                               upperAngleBound=125,
                                               thresh=15)
            yawspeed = self.processVideo.LineOrientation(segLineImage,
                                                         angle,
                                                         5,
                                                         yawspeed=0.5)
            xWindowSize = 180
            yWindowSize = 70

        numRows, numCols, _ = image.shape
        centerx = numCols / 2
        centery = numRows / 2

        # box defines when the directive is finished
        xLower = centerx - xWindowSize
        yLower = centery - yWindowSize
        xUpper = centerx + xWindowSize
        yUpper = centery + yWindowSize
        cv2.rectangle(segLineImage, (xLower, yLower), (xUpper, yUpper),
                      (255, 255, 255), 3)

        if (yawspeed == 0 and cx != None and cy != None and cx < xUpper
                and cx > xLower and cy < yUpper and cy > yLower):

            rospy.logwarn("Oriented " + self.orientation + " to " +
                          self.lineColor + " line")
            directiveStatus = 1

        elif cx == None or cy == None:

            rospy.logwarn("*** ERROR: Lost " + self.platformColor +
                          " platform ***")
            directiveStatus = -1

        else:

            # If drone is still trying to align, it adapts to one of three algorithms:

            # if this frame failed to detect a line, go towards platform
            # without turning in hopes that the next frames will detect one again
            if yawspeed == None:
                #rospy.logwarn("No line detected")
                yawspeed = 0

            # if drone is not "near" the center defined by a box, just focus on moving drone back;
            # no turning
            elif self.orientation == "PERPENDICULAR" and (
                    cx > xUpper or cx < xLower or cy > yUpper or cy < yLower):
                cv2.rectangle(segLineImage, (xLower, yLower), (xUpper, yUpper),
                              (0, 0, 255), 3)
                #rospy.logwarn("Only MOVING drone. x speed = " + str(xspeed) + "; y speed = " + str(yspeed))
                rospy.logwarn("Only MOVING drone")
                self.moveTime = 0.1
                self.waitTime = 0.01
                yawspeed = 0

            # if drone isn't perpendicular yet and is "near" the center (defined by a box),
            # just turn the drone; no need move drone
            elif yawspeed != 0:
                #rospy.logwarn("Only TURNING drone. yaw speed = " + str(yawspeed))
                rospy.logwarn("Only TURNING drone")
                self.moveTime = 0.2
                self.waitTime = 0.1
                xspeed = 0
                yspeed = 0

            #else:

            #   rospy.logwarn("Only MOVING drone")
            #rospy.logwarn("Only MOVING drone. x speed = " + str(xspeed) + "; y speed = " + str(yspeed))

            directiveStatus = 0

        return directiveStatus, (xspeed, yspeed, yawspeed, 0), segLineImage, (
            cx, cy), self.moveTime, self.waitTime, None

    # This method is called by the state machine when it considers this directive finished
    def Finished(self):
        rospy.logwarn("***** Resetting PID Values *****")
        self.pid.ResetPID()
コード例 #2
0
class ReturnToLineDirective(AbstractDroneDirective):

    # sets up this directive
    # platformColor: color of the platform to return to
    def __init__(self, lineColor, speedModifier=0.5, radiusThresh=255):

        self.lineColor = lineColor
        self.processVideo = ProcessVideo()
        self.speedModifier = speedModifier
        self.radiusThresh = radiusThresh
        self.moveTime = 0.25
        self.waitTime = 0.10

    def InsideCircle(self, point, circleCenter, circleRadius):
        x = point[0]
        y = point[1]
        center_x = circleCenter[0]
        center_y = circleCenter[1]
        radius = circleRadius

        return (math.pow((x - center_x), 2) + math.pow(
            (y - center_y), 2)) < math.pow(radius, 2)

    # Given the image and navdata of the drone, returns the following in order:
    #
    # A directive status int:
    #   0 if algorithm is still running and drone hasn't returned to the line yet
    #   1 if algorithm is finished and drone is now over the color
    #
    # A tuple of (xspeed, yspeed, yawspeed, zspeed):
    #   indicating the next instructions to fly the drone
    #
    # An image reflecting what is being done as part of the algorithm
    def RetrieveNextInstruction(self, image, navdata):

        segLineImage = self.processVideo.DetectColor(image, self.lineColor)
        lines, image = self.processVideo.MultiShowLine(segLineImage)

        #navdata stores the last location and angle in the case of an error
        cx = navdata[1][0][0]
        cy = navdata[1][0][1]
        angle = navdata[1][1]

        #cv2.circle(image, (cx,cy), self.radiusThresh, (0,255,0), 1)

        hasPlatform = False
        # thresh in degrees
        thresh = 18
        for line in lines:
            if line != None:
                # original line was found if angle matches original, to some threshold
                if ((abs(angle - line[0]) < thresh or abs(angle - line[0]) >
                     (180 - thresh))):
                    hasPlatform = True
                    cv2.circle(image, line[1], 15, (0, 255, 0), -1)
                    cx = line[1][0]
                    cy = line[1][1]
                else:
                    cv2.circle(image, line[1], 15, (0, 0, 255), 5)

        if hasPlatform:
            rospy.logwarn("Returned to " + self.lineColor + " line")
            directiveStatus = 1
            zspeed = 0

        else:
            rospy.logwarn("Returning to " + self.lineColor + " line")
            directiveStatus = 0
            zspeed = 0.1

        if cx == None or cy == None:
            rospy.logwarn("Returning -- no " + self.lineColor +
                          " detected @ this altitude, increasing altitude")
            return 0, (0, 0, 0, 0.5), image, (cx, cy), 0, 0

        xspeed, yspeed, _ = self.processVideo.ApproximateSpeed(image,
                                                               cx,
                                                               cy,
                                                               ytolerance=50,
                                                               xtolerance=50)

        yspeed = min(yspeed * self.speedModifier, 1)
        xspeed = min(xspeed * self.speedModifier, 1)
        rospy.logwarn("X Speed: " + str(xspeed) + " Y Speed: " + str(yspeed))

        self.processVideo.DrawCircle(image, (cx, cy))

        return directiveStatus, (xspeed, yspeed, 0, zspeed), image, ((
            cx, cy), angle), self.moveTime, self.waitTime, None