def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses( ) # Detecting last checkpoint. last_checkpoint = None if os.path.isdir( training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir( training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome.") elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: train_dataset = datasets.load_dataset("corpora/com_voice_accent_corpus", split="train", cache_dir=model_args.cache_dir) eval_dataset = datasets.load_dataset("corpora/com_voice_accent_corpus", split="test", cache_dir=model_args.cache_dir) feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=16_000, padding_value=0.0, do_normalize=True, return_attention_mask=True) processor = CustomWav2Vec2Processor(feature_extractor=feature_extractor) model = Wav2Vec2CommVoiceAccentModel.from_pretrained( "facebook/wav2vec2-large-xlsr-53", attention_dropout=0.01, hidden_dropout=0.01, feat_proj_dropout=0.0, mask_time_prob=0.05, layerdrop=0.01, gradient_checkpointing=True, ) if model_args.freeze_feature_extractor: model.freeze_feature_extractor() if data_args.max_train_samples is not None: train_dataset = train_dataset.select(range( data_args.max_train_samples)) if data_args.max_val_samples is not None: eval_dataset = eval_dataset.select(range(data_args.max_val_samples)) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(batch): start = 0 stop = 10 srate = 16_000 speech_array, sampling_rate = torchaudio.load(batch["file"]) speech_array = speech_array[0].numpy()[:stop * sampling_rate] batch["speech"] = librosa.resample(np.asarray(speech_array), sampling_rate, srate) batch["sampling_rate"] = srate batch["parent"] = batch["label"] return batch train_dataset = train_dataset.map( speech_file_to_array_fn, remove_columns=train_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) eval_dataset = eval_dataset.map( speech_file_to_array_fn, remove_columns=eval_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) def prepare_dataset(batch): # check that all files have the correct sampling rate assert ( len(set(batch["sampling_rate"])) == 1 ), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." batch["input_values"] = processor( batch["speech"], sampling_rate=batch["sampling_rate"][0]).input_values batch["labels"] = batch["parent"] return batch train_dataset = train_dataset.map( prepare_dataset, remove_columns=train_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=True, num_proc=data_args.preprocessing_num_workers, ) eval_dataset = eval_dataset.map( prepare_dataset, remove_columns=eval_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=True, num_proc=data_args.preprocessing_num_workers, ) from sklearn.metrics import classification_report, confusion_matrix def compute_metrics(pred): label_idx = [0, 1, 2] label_names = ['austria', 'germany', 'switzerland'] labels = pred.label_ids.argmax(-1) preds = pred.predictions.argmax(-1) acc = accuracy_score(labels, preds) f1 = f1_score(labels, preds, average='macro') report = classification_report(y_true=labels, y_pred=preds, labels=label_idx, target_names=label_names) matrix = confusion_matrix(y_true=labels, y_pred=preds) print(report) print(matrix) wandb.log({ "conf_mat": wandb.plot.confusion_matrix(probs=None, y_true=labels, preds=preds, class_names=label_names) }) wandb.log({ "precision_recall": wandb.plot.pr_curve(y_true=labels, y_probas=pred.predictions, labels=label_names) }) return {"accuracy": acc, "f1_score": f1} wandb.init(name=training_args.output_dir, config=training_args) # Data collator data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True) # Initialize our Trainer trainer = CTCTrainer( model=model, data_collator=data_collator, args=training_args, compute_metrics=compute_metrics, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=processor.feature_extractor, ) # Training if training_args.do_train: if last_checkpoint is not None: checkpoint = last_checkpoint elif os.path.isdir(model_args.model_name_or_path): checkpoint = model_args.model_name_or_path else: checkpoint = None train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() # save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank): processor.save_pretrained(training_args.output_dir) metrics = train_result.metrics max_train_samples = (data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate() max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len( eval_dataset) metrics["eval_samples"] = min(max_val_samples, len(eval_dataset)) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) return results
def main(model_args, data_args, training_args): # Detecting last checkpoint. last_checkpoint = None if os.path.isdir( training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir( training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome.") elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: train_dataset = datasets.load_dataset(CORPORA_PATH, split="train", cache_dir=model_args.cache_dir) eval_dataset = datasets.load_dataset(CORPORA_PATH, split="test", cache_dir=model_args.cache_dir) feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=16_000, padding_value=0.0, do_normalize=True, return_attention_mask=True) processor = CustomWav2Vec2Processor(feature_extractor=feature_extractor) model = Wav2VecClassifierModel.from_pretrained( "facebook/wav2vec2-large-xlsr-53", attention_dropout=0.01, hidden_dropout=0.01, feat_proj_dropout=0.0, mask_time_prob=0.05, layerdrop=0.01, gradient_checkpointing=True, ) if model_args.freeze_feature_extractor: model.freeze_feature_extractor() if data_args.max_train_samples is not None: train_dataset = train_dataset.select(range( data_args.max_train_samples)) if data_args.max_val_samples is not None: max_val_samples = min(data_args.max_val_samples, len(eval_dataset)) eval_dataset = eval_dataset.select(range(max_val_samples)) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(batch): start = 0 stop = SECONDS_STOP srate = S_RATE speech_array, sampling_rate = torchaudio.load(batch["file"]) speech_array = speech_array[0].numpy()[:stop * sampling_rate] batch["speech"] = librosa.resample(np.asarray(speech_array), sampling_rate, srate) batch["sampling_rate"] = srate batch["parent"] = batch["label"] return batch train_dataset = train_dataset.map( speech_file_to_array_fn, remove_columns=train_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) eval_dataset = eval_dataset.map( speech_file_to_array_fn, remove_columns=eval_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) def prepare_dataset(batch): # check that all files have the correct sampling rate assert ( len(set(batch["sampling_rate"])) == 1 ), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." batch["input_values"] = processor( batch["speech"], sampling_rate=batch["sampling_rate"][0]).input_values batch["labels"] = batch["parent"] return batch train_dataset = train_dataset.map( prepare_dataset, remove_columns=train_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=True, num_proc=data_args.preprocessing_num_workers, ) eval_dataset = eval_dataset.map( prepare_dataset, remove_columns=eval_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=True, num_proc=data_args.preprocessing_num_workers, ) from sklearn.metrics import classification_report, confusion_matrix def macro_averaged_mean_absolute_error(y_true, y_pred): c = np.unique(y_true) c_len = len(c) err = 0.0 for i in c: idx = np.where(y_true == i)[0] y_true_label = np.take(y_true, idx) y_pred_label = np.take(y_pred, idx) err = err + mean_absolute_error(y_true=y_true_label, y_pred=y_pred_label) return err / c_len def compute_metrics(pred): label_idx = LABEL_IDX label_names = LABEL_NAMES labels = pred.label_ids.argmax(-1) preds = pred.predictions.argmax(-1) acc = accuracy_score(labels, preds) f1 = f1_score(labels, preds, average='macro') report = classification_report(y_true=labels, y_pred=preds, labels=label_idx, target_names=label_names) matrix = confusion_matrix(y_true=labels, y_pred=preds) print(report) print(matrix) wandb.log({ "conf_mat": wandb.plot.confusion_matrix(probs=None, y_true=labels, preds=preds, class_names=label_names) }) wandb.log({ "precision_recall": wandb.plot.pr_curve(y_true=labels, y_probas=pred.predictions, labels=label_names) }) mse = mean_squared_error(y_true=labels, y_pred=preds) mae = mean_absolute_error(y_true=labels, y_pred=preds) maem = macro_averaged_mean_absolute_error(y_true=labels, y_pred=preds) return { "accuracy": acc, "f1_score": f1, "MSE": mse, "MAE": mae, "MAE^M": maem } wandb.init(name=training_args.output_dir, config=training_args) # Data collator data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True) # Initialize our Trainer trainer = CTCTrainer( model=model, data_collator=data_collator, args=training_args, compute_metrics=compute_metrics, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=processor.feature_extractor, ) # Training if training_args.do_train: if last_checkpoint is not None: checkpoint = last_checkpoint elif os.path.isdir(model_args.model_name_or_path): checkpoint = model_args.model_name_or_path else: checkpoint = None train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() # save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank): processor.save_pretrained(training_args.output_dir) metrics = train_result.metrics max_train_samples = (data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate() max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len( eval_dataset) metrics["eval_samples"] = min(max_val_samples, len(eval_dataset)) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) return results