コード例 #1
0
    'input_size': len(data_options['symbols']) - 1,
    'hidden_size': 64,
    'layer': 2,
    'batch_first': True,
}
train_options = {
    'upper_th': 0.3,
    'lower_th': -0.3,
    'z_score_mean_window': 3,
    'z_score_std_window': 6,
    'slsp': (-100,2000), # None means no constraint
    'close_change': 1,  # 0 = close; 1 = change
}
# tensorboard --logdir C:\Users\Chris\projects\210215_mt5\production\docs\1\runs --host localhost

with mt5Model.csv_Writer_Helper():
    prices_loader = prices.Prices_Loader(symbols=data_options['symbols'],
                                         timeframe=data_options['timeframe'],
                                         start=data_options['start'],
                                         end=data_options['end'],
                                         timezone=data_options['timezone'],
                                         data_path=data_options['local_min_path'],
                                         deposit_currency=data_options['deposit_currency'])
    # get the data
    prices_loader.get_data(data_options['local'])
    # Prices = prices_loader.get_Prices_format(options['local'])

    # split into train set and test set
    Train_Prices, Test_Prices = prices.split_Prices(prices_loader.Prices, percentage=data_options['trainTestSplit'])
    dependent_variable = Train_Prices.c
    if train_options['close_change'] == 1:
コード例 #2
0
train_long_stat_file_name = "{}_{}_{}_Long_Limit{}_From{}_To{}_Train.csv".format(
    curr_time_string, data_options['symbols'][0], data_options['timeframe'],
    data_options['max_limit_range'], start_string, end_string)
train_short_stat_file_name = "{}_{}_{}_Short_Limit{}_From{}_To{}_Train.csv".format(
    curr_time_string, data_options['symbols'][0], data_options['timeframe'],
    data_options['max_limit_range'], start_string, end_string)
test_long_stat_file_name = "{}_{}_{}_Long_Limit{}_From{}_To{}_Test.csv".format(
    curr_time_string, data_options['symbols'][0], data_options['timeframe'],
    data_options['max_limit_range'], start_string, end_string)
test_short_stat_file_name = "{}_{}_{}_Short_Limit{}_From{}_To{}_Test.csv".format(
    curr_time_string, data_options['symbols'][0], data_options['timeframe'],
    data_options['max_limit_range'], start_string, end_string)
with mt5Model.csv_Writer_Helper(
        csv_save_path=data_options['csv_save_path'],
        csv_file_names=[
            train_long_stat_file_name, train_short_stat_file_name,
            test_long_stat_file_name, test_short_stat_file_name
        ],
        append_checkpoint=data_options["append_checkpoint"]) as helper:
    # define loader
    prices_loader = prices.Prices_Loader(
        symbols=data_options['symbols'],
        timeframe=data_options['timeframe'],
        data_path=data_options['local_min_path'],
        start=data_options['start'],
        end=data_options['end'],
        timezone=data_options['timezone'],
        deposit_currency=data_options['deposit_currency'])
    # get the data
    prices_loader.get_data(data_options['local'])