'input_size': len(data_options['symbols']) - 1, 'hidden_size': 64, 'layer': 2, 'batch_first': True, } train_options = { 'upper_th': 0.3, 'lower_th': -0.3, 'z_score_mean_window': 3, 'z_score_std_window': 6, 'slsp': (-100,2000), # None means no constraint 'close_change': 1, # 0 = close; 1 = change } # tensorboard --logdir C:\Users\Chris\projects\210215_mt5\production\docs\1\runs --host localhost with mt5Model.csv_Writer_Helper(): prices_loader = prices.Prices_Loader(symbols=data_options['symbols'], timeframe=data_options['timeframe'], start=data_options['start'], end=data_options['end'], timezone=data_options['timezone'], data_path=data_options['local_min_path'], deposit_currency=data_options['deposit_currency']) # get the data prices_loader.get_data(data_options['local']) # Prices = prices_loader.get_Prices_format(options['local']) # split into train set and test set Train_Prices, Test_Prices = prices.split_Prices(prices_loader.Prices, percentage=data_options['trainTestSplit']) dependent_variable = Train_Prices.c if train_options['close_change'] == 1:
train_long_stat_file_name = "{}_{}_{}_Long_Limit{}_From{}_To{}_Train.csv".format( curr_time_string, data_options['symbols'][0], data_options['timeframe'], data_options['max_limit_range'], start_string, end_string) train_short_stat_file_name = "{}_{}_{}_Short_Limit{}_From{}_To{}_Train.csv".format( curr_time_string, data_options['symbols'][0], data_options['timeframe'], data_options['max_limit_range'], start_string, end_string) test_long_stat_file_name = "{}_{}_{}_Long_Limit{}_From{}_To{}_Test.csv".format( curr_time_string, data_options['symbols'][0], data_options['timeframe'], data_options['max_limit_range'], start_string, end_string) test_short_stat_file_name = "{}_{}_{}_Short_Limit{}_From{}_To{}_Test.csv".format( curr_time_string, data_options['symbols'][0], data_options['timeframe'], data_options['max_limit_range'], start_string, end_string) with mt5Model.csv_Writer_Helper( csv_save_path=data_options['csv_save_path'], csv_file_names=[ train_long_stat_file_name, train_short_stat_file_name, test_long_stat_file_name, test_short_stat_file_name ], append_checkpoint=data_options["append_checkpoint"]) as helper: # define loader prices_loader = prices.Prices_Loader( symbols=data_options['symbols'], timeframe=data_options['timeframe'], data_path=data_options['local_min_path'], start=data_options['start'], end=data_options['end'], timezone=data_options['timezone'], deposit_currency=data_options['deposit_currency']) # get the data prices_loader.get_data(data_options['local'])